122 research outputs found
Recommended from our members
Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy
The nanoplasmonic field enhancement effects in the energetic electron emission from few-nm-sized silver clusters exposed to intense femtosecond dual pulses are investigated by high-resolution double differential electron spectroscopy. For moderate laser intensities of 10 14Wcm -2, the delaydependent and angular-resolved electron spectra show laser-aligned emission of electrons up to keV kinetic energies, exceeding the ponderomotive potential by two orders of magnitude. The importance of the nanoplasmonic field enhancement due to resonant Mie-plasmon excitation observed for optimal pulse delays is investigated by a direct comparison with molecular dynamics results. The excellent agreement of the key signatures in the delay-dependent and angular-resolved spectra with simulation results allows for a quantitative analysis of the laser and plasmonic contributions to the acceleration process. The extracted field enhancement at resonance verifies the dominance of surfaceplasmon-assisted re-scattering
Origin of Shifts in the Surface Plasmon Resonance Frequencies for Au and Ag Nanoparticles
Origin of shifts in the surface plasmon resonance (SPR) frequency for noble
metal (Au, Ag) nanoclusters are discussed in this book chapter. Spill out of
electron from the Fermi surface is considered as the origin of red shift. On
the other hand, both screening of electrons of the noble metal in porous media
and quantum effect of screen surface electron are considered for the observed
blue shift in the SPR peak position.Comment: 37 pages, 14 Figures in the submitted book chapter of The Annual
Reviews in Plasmonics, edited by Professor Chris D. Geddes. Springer Scinec
Ultrafast X-ray scattering of xenon nanoparticles: imaging transient states of matter
Sem informaçãoFemtosecond x-ray laser flashes with power densities of up to 10(14) W/cm(2) at 13.7 nm wavelength were scattered by single xenon clusters in the gas phase. Similar to light scattering from atmospheric microparticles, the x-ray diffraction patterns carry information about the optical constants of the objects. However, the high flux of the x-ray laser induces severe transient changes of the electronic configuration, resulting in a tenfold increase of absorption in the developing nanoplasma. The modification in opaqueness can be correlated to strong atomic charging of the particle leading to excitation of Xe4+. It is shown that single-shot single-particle scattering on femtosecond time scales yields insight into ultrafast processes in highly excited systems where conventional spectroscopy techniques are inherently blind.Femtosecond x-ray laser flashes with power densities of up to 10(14) W/cm(2) at 13.7 nm wavelength were scattered by single xenon clusters in the gas phase. Similar to light scattering from atmospheric microparticles, the x-ray diffraction patterns carry information about the optical constants of the objects. However, the high flux of the x-ray laser induces severe transient changes of the electronic configuration, resulting in a tenfold increase of absorption in the developing nanoplasma. The modification in opaqueness can be correlated to strong atomic charging of the particle leading to excitation of Xe4+. It is shown that single-shot single-particle scattering on femtosecond time scales yields insight into ultrafast processes in highly excited systems where conventional spectroscopy techniques are inherently blind.108915Sem informaçãoSem informaçãoBMBF [05KS4KT1, 05KS7KT2]HGF Virtuelles Institut [VH-VI-103, VH-VI-302]Sem informaçãoWe would like to thank all staff at FLASH for their outstanding support. Funding is acknowledged from BMBF 05KS4KT1 and 05KS7KT2, as well as HGF Virtuelles Institut VH-VI-103 and VH-VI-302
Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions
Background: Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling.
Objectives: To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols.
Methods: Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses.
Results: The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon (“soot”). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification.
Conclusions: Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices
A coarse-grained Monte Carlo approach to diffusion processes in metallic nanoparticles
A kinetic Monte Carlo approach on a coarse-grained lattice is developed for the simulation of surface diffusion processes of Ni, Pd and Au structures with diameters in the range of a few nanometers. Intensity information obtained via standard two-dimensional transmission electron microscopy imaging techniques is used to create three-dimensional structure models as input for a cellular automaton. A series of update rules based on reaction kinetics is defined to allow for a stepwise evolution in time with the aim to simulate surface diffusion phenomena such as Rayleigh breakup and surface wetting. The material flow, in our case represented by the hopping of discrete portions of metal on a given grid, is driven by the attempt to minimize the surface energy, which can be achieved by maximizing the number of filled neighbor cells
- …