17 research outputs found

    Dual effect of oxidative stress on leukemia cancer induction and treatment

    Get PDF

    Crystallization of Calcium Oxalates Is Controlled by Molecular Hydrophilicity and Specific Polyanion-Crystal Interactions

    No full text
    To gain more insight into protein structure-function relationships that govern ectopic biomineralization processes in kidney stone formation, we have studied the ability of urinary proteins (Tamm-Horsfall protein, osteopontin (OPN), prothrombin fragment 1 (PTF1), bikunin, lysozyme, albumin, fetuin-A), and model compounds (a bikunin fragment, recombinant-, milk-, bone osteopontin, poly-L-aspartic acid (poly asp), poly-L-glutamic acid (poly glu)) in modulating precipitation reactions of kidney stone-related calcium oxalate mono- and dihydrates (COM, COD). Combining scanning confocal microscopy and fluorescence imaging, we determined the crystal faces of COM with which these polypeptides interact; using scanning electron microscopy, we characterized their effects on crystal habits and precipitated volumes. Our findings demonstrate that polypeptide adsorption to COM crystals is dictated first by the polypeptide\u27s affinity for the crystal followed by its preference for a crystal face: basic and relatively hydrophobic macromolecules show no adsorption, while acidic and more hydrophilic polypeptides adsorb either nonspecifically to all faces of COM or preferentially to {100}/{121} edges and {100} faces. However, investigating calcium oxalates grown in the presence of these polypeptides showed that some acidic proteins that adsorb to crystals do not affect crystallization, even if present in excess of physiological concentrations. These proteins (albumin, bikunin, PTF1, recombinant OPN) have estimated total hydrophilicities from 200 to 850 kJ/mol and net negative charges from -9 to -35, perhaps representing a window in which proteins adsorb and coat urinary crystals (support of excretion) without affecting crystallization. Strongest effects on crystallization were observed for polypeptides that are either highly hydrophilic (\u3e950 kJ/mol) and highly carboxylated (poly asp, poly glu), or else highly hydrophilic and highly phosphorylated (native OPN isoforms), suggesting that highly hydrophilic proteins strongly affect precipitation processes in the urinary tract. Therefore, the level of hydrophilicity and net charge is a critical factor in the ability of polypeptides to affect crystallization and to regulate biomineralization processes

    Morphoelectric and transcriptomic divergence of the layer 1 interneuron repertoire in human versus mouse neocortex

    No full text
    Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1. Subclass and subtype comparisons showed stronger transcriptomic differences in human L1 and were correlated with strong morphoelectric variability along dimensions distinct from mouse L1 variability. Accompanied by greater layer thickness and other cytoarchitecture changes, these findings suggest that L1 has diverged in evolution, reflecting the demands of regulating the expanded human neocortical circuit.</p

    EHS clinical guidelines on the management of the abdominal wall in the context of the open or burst abdomen.

    No full text
    To provide guidelines for all surgical specialists who deal with the open abdomen (OA) or the burst abdomen (BA) in adult patients both on the methods used to close the musculofascial layers of the abdominal wall, and regarding possible materials to be used
    corecore