
Udensi and Tchounwou Journal of Experimental & Clinical Cancer Research  (2014) 33:106 
DOI 10.1186/s13046-014-0106-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref
REVIEW Open Access
Dual effect of oxidative stress on leukemia cancer
induction and treatment
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Abstract

Oxidative stress (OS) has been characterized by an imbalance between the production of reactive oxygen species
(ROS) and a biological system’s ability to repair oxidative damage or to neutralize the reactive intermediates
including peroxides and free radicals. High ROS production has been associated with significant decrease in
antioxidant defense mechanisms leading to protein, lipid and DNA damage and subsequent disruption of cellular
functions. In humans, OS has been reported to play a role in the pathogenesis of neurodegenerative diseases such
as Alzheimer’s disease, Huntington’s disease, Lou Gehrig’s disease, multiple sclerosis and Parkinson’s disease, as well
as atherosclerosis, autism, cancer, heart failure, and myocardial infarction. Although OS has been linked to the
etiology and development of chronic diseases, many chemotherapeutic drugs have been shown to exert their
biologic activity through induction of OS in affected cells. This review highlights the controversial role of OS in the
development and progression of leukemia cancer and the therapeutic application of increased OS and antioxidant
approaches to the treatment of leukemia patients.
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Introduction
Despite the numerous scientific studies on leukemia,
there are still gaps on information about the risk factors
and actual causes and such knowledge are necessary for
effective treatment and prevention strategies to be estab-
lished. OS is a cellular environmental condition that results
from excessive production of ROS with reduced or lack of
antioxidants production to maintain homeostasis [1].
Although OS is known to induce cancer, it has also been
reported to have beneficial attributes. For instance it
induces apoptosis which is a mechanism in cancer treat-
ment [2]. ROS are essential signaling molecules which
play different important roles in cellular processes such
as promoting health and longevity [3] and antimicrobial
phagocytosis by cells of the innate immune system [4].
Over production of reactive oxygen species without
adequate response by the innate antioxidant system to
maintain the balance leads to an OS environment. Some
of the ways OS and free radicals are created are through
chemotherapeutic agents and radiation therapy which
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generate reactive ROS in patients during cancer therapy.
The interaction between growing cancer cells and the
host immune response also generate OS. The effect of
OS to the cells may either be acute or chronic. Chronic
OS results from little oxidative damage which accumu-
lates during the life cycle of the cell and subsequently
disrupts essential cellular functions and triggers many
cancers [5-7], including solid tumors such as prostate
carcinoma [8], melanoma [9], and several hematopoietic
malignancies such as acute lymphoblastic leukemia (ALL),
[10] myelodysplastic syndrome (MDS), [11] and myeloid
leukemia; chronic myeloid leukemia (CML) and acute
myeloid leukemia (AML) [12]. OS has also been impli-
cated in other human diseases including acute respiratory
distress syndrome [13], aging [14], Alzheimer [15], athero-
sclerosis [16], cardiovascular diseases, and amyotrophic
lateral sclerosis [17], diabetes [18], inflammation [19],
inflammatory joint disease [20], neurological disease
[21], obesity [22], Parkinson [23], pulmonary fibrosis [24],
Rheumatoid arthritis [25], and vascular disease [26].
In some cancers ROS facilitate carcinogenesis by pro-

tecting the cell from apoptosis and promoting cell
survival [27,28], inducing cell proliferation [29], mi-
gration and metastasis [30] and drug-resistance [31].
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The regulation of OS is an important factor in both
tumor development and responses to anticancer therapies.
Many signalling pathways that are linked to tumorigenesis
can also regulate the metabolism of reactive oxygen spe-
cies (ROS) through direct or indirect mechanisms [32].
Depending on the condition and environment, OS may
influence the role of ROS to either benefit malignant can-
cer formation or cancer treatment. This review explores
the role of OS in leukemogenesis and highlights its im-
portance in leukemia treatment. Understanding the mo-
lecular mechanisms of oxidative will help in developing
new and reliable treatment and preventive measures for
the different types of leukemia.

Oxidative stress
OS results when there is an imbalance between the gener-
ation of oxygen-free radicals or reactive oxygen species
(ROS) and response from the antioxidant defense systems
[33]. Free radicals are molecules or molecular fragments
that contain one or more unpaired electrons which make
them highly reactive [34]. Under normal circumstances
Figure 1 Types of oxidants and antioxidants which imbalance will lea
of ROS compared to antioxidant defense.
the effect of reactive species is balanced by the antioxidant
action of enzymatic and non-enzymatic antioxidants. Es-
sential cellular functions, such as gene expression, are
influenced by the balance between pro- and antioxidant
conditions [35]. Antioxidant defenses are extremely impor-
tant as they represent the direct removal of free radicals
(pro-oxidants), providing maximal protection for biological
sites. Physiological processes of the cell including cellular
proliferation and host defense may be interrupted when
the ROS exceed or antioxidants fall below the homeostatic
set point as illustrated in Figure 1. Increased ROS could be
detrimental and cause cell death or accelerate ageing and
age-related diseases. ROS contribute to cellular dysfunc-
tion and cell death by damaging proteins, lipids, and
DNA. They may also serve as stress signals which activate
specific redosensitive signaling pathways [36]. Production
of ROS, reactive oxygen intermediate (ROI) and reactive
nitrogen intermediate (RNI) are part of human body’s
physiological processes [37]. Both ROI and RNI activities
affect cells in similar ways, thus, the concept of OS
has been expanded to include; hydroxyl and superoxide
d to oxidative stress (OS). OS is described as an excess production
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radicals, hydrogen peroxide and singlet oxygen, reactive
nitrogen species (RNS) or RNI including nitric oxide (NO),
peroxynitrite and, S-nitrosothiols [38].
Naturally, the human body maintains the redox balance

by the combined action of antioxidant enzymes which
include superoxide dismutase (SOD), catalase (CAT), glu-
tathione (GSH), glutathione peroxidase (GPx) and gluta-
thione reductase, monoamine oxidase (MAO), ascorbate,
α-tocopherol, cysteine, thioredoxin, and vitamins [33,39].
Coenzyme Q10 (CoQ10) is a very important endogenous
antioxidant [40]. Also crucial are the peroxiredoxins (Prx),
a family of small non-seleno peroxidases that regulate
cellular ROS [41]. In their study, Valko and co-workers
observed that ROS generated by the mitochondria, nico-
tinamide adenine dinucleotide phosphate (NADPH) oxi-
dases impacted on cell-cycle progression, cell motility, and
growth factor signaling in a variety of normal cell types
[4]. More ROS are produced when there is irregularity
with the body’s antioxidant defense system due to dis-
ease other negative environmental conditions [39]. For
example, ROS production spikes as cells transition from
normal tissue to invasive carcinoma caused by the increase
in metabolic aberrations in the transforming cells [42].
Also, levels of oxidants increase with corresponding de-
crease in levels of antioxidants in leukemia [43]. This view
is supported by a study on ALL patients which showed that
a tilt in ROS/antioxidant balance led to increase in serum
level of markers of OS such as thiobarbituric acid reactive
substances (TBARS), and serum protein carbonylation in
ALL patients than in normal controls [10]. Literature is
replete with reports on the harmful effects of ROS, how-
ever, some of the harmful concept are being exploited as
potential targets for drug development [34]. For example
low concentrations of ROS was observed to induce mito-
genic response and trigger a series of cellular responses
during noxia which helps to fight against infectious. But
higher concentrations of ROS may induce damage of cell
structures, including lipids and membranes, proteins and
nucleic acids [44].

Sources/Activators of Reactive Oxygen Species (ROS)
ROS production can be triggered by both endogenous and
exogenous factors. The endogenous sources are from cel-
lular metabolism especially during mitochondria-catalyzed
electron transport reactions, cytochrome P450 metabol-
ism, and activities of peroxisomes, neutrophils, eosinophils
and macrophages during inflammation [45]. Activated
macrophages can initiate an increase in oxygen uptake
which triggers increases in different reactive oxygen spe-
cies, such as superoxide anion, nitric oxide and hydrogen
peroxide [46]. Animal Cytochrome P450 enzymes is sus-
pected to have a dual role of providing protection against
natural toxic chemicals from plants and conversely indu-
cing the production of reactive oxygen species especially
superoxide anion and hydrogen peroxide after the break-
down or uncoupling of the P450 catalytic cycle [47].
Exogenous sources may include exposure to various xe-
nobiotics, irradiation by UV light, X-rays and gamma-rays.
And metal-catalyzed reactions that produce free radicals,
chlorinated compounds, and barbiturates [48]. Mitochon-
dria are regarded as the most important physiological
source of radicals in living organisms because it generates
approximately 2–3 nmol of superoxide/min per mg of
protein [45]. Superoxide radical is considered as the stoi-
chiometric precursor for hydrogen peroxide (H2O2) [49].
Ubisemiquinone is a reductant of oxygen in mitochondrial
membranes [45]. Other endogenous sources of superoxide
radical besides mitochondria include xanthine oxidase
(XO), an enzyme that is found within the various tissues
of mammals and which can be acquired from bacteria
[50]. XO catalyzes the conversion of hypoxanthine to
xanthine and xanthine to uric acid reducing molecular
oxygen to form superoxide anion which subsequently
produces hydrogen peroxide [34]. During their normal
catalytic process, enzymes found in the peroxisomes
can produce hydrogen peroxide (H2O2), superoxide (O2•

− ),
or nitric oxide (NO•) which can readily react to form other
ROS and RNS such as peroxynitrite (ONOO−), hydroxyl
radical (•OH), and alkyl peroxides (ROOH). Peroxisomes
play vital roles in fat metabolism especially in the liver and
other organs leading to the production of H2O2, but not
O2•

− mostly after prolonged starvation [51,52]. Superoxide
may act as a reductant or an oxidant and is a key molecule
in several subsequent physiologic reactions. Most of the
superoxide generated in vivo is converted into H2O2 pri-
marily by the actions of superoxide dismutases, which
exist in cytosolic (SOD1), mitochondrial (SOD2), and
extracellular (SOD3) isoform [51]. Activators and inhibi-
tors of ROS are illustrated in Figure 2.

Mechanisms of action of ROS
There are different mechanisms through which ROS cause
cell damage. For instance endogenous damage occurs when
intermediates of oxygen (dioxygen) reduction - oxygen-free
radicals (OFR) attack the bases and the deoxyribosyl
backbone of DNA. This endogenous DNA damage dem-
onstrates the genotoxic, carcinogenic, and mutations induc-
tion properties of ROS [34]. Another important mechanism
is the perturbation of transcription factors activities. Under-
standing the complex redox regulation of the transcription
of specific eukaryotic genes will give more insight into the
role of redox-sensitive transcription factors in this process.
Figure 3 shows a schematic diagram of transcription fac-
tors that are modulated by ROS. The hypoxia-inducible
transcription factor HIF-1 mediates upregulation of plas-
minogen activator inhibitor-1 (PAI-1) expression under
low oxygen tension (hypoxia) and promotes angiogenesis
[54]. Self-renewal of hematopoietic stem cells (HSCs),



Figure 2 Schematic representation of various activators and inhibitors of reactive oxygen species production [53].

Figure 3 Transcription factors that are modulated by reactive
oxygen species [53,54].
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leukemia-initiating cells (LICs) and myeloproliferative
neoplasms occurs under hypoxic condition [55]. There are
contrary opinions on the role of HIF-1 in leukemia patho-
genesis but it induces genes that facilitate adaptation and
survival of cells and the whole organism when the en-
vironment changes from normoxia (∼21% O2) to hypoxia
(∼1% O2). Cells and tissues may also be protected from
oxidative damage by NF-E2 related factor 2 (Nrf2), a
member of the cap‘n’collar family of basic leucine zipper
transcription factors which induces activation of genes en-
coding detoxifying and antioxidant enzymes [56]. Activa-
tor protein 1 (AP-1) regulates diverse biological functions,
including cell proliferation, protein synthesis, apoptosis
and secretion of inflammatory and profibrotic factors.
AP-1 also has a double edge function in tumorigenesis
in that it can have both oncogenic or tumor suppressive
activity depending on the cell context and the genetic
background of the tumor [57,58]. Other important genes
involved in the linkage between OS and leukemia are matrix
metallopeptidase 1 (MMP-1) and endothelin-1 which are
expressed in response to Angiotensin II (Ang II) [59]. The
growth arrest homeobox gene, mesenchyme homeobox 2
(Gax or MEOX2) regulates cell differentiation, prolifera-
tion, and migration and Gax is likely to have a regulatory
function in the G0-to-G1 transition of the cell cycle
in vascular smooth muscle cells [60,61]. Cyclic AMP
response element-binding protein (CREB) may have pro-
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survival effects on APL cells by protecting blasts from
APL patients with acute promyelocytic leukemia (APL)
against death induced by first-line anti-leukemic anthracy-
clines like daunorubicin (DNR) [62].
Peroxisome proliferator-activated receptor gamma

(PPARγ) is involved in pathological processes of different
disease and it is a potential therapeutic target for the treat-
ment of a diverse array of disorders including AML, in
which supplementary treatment is suggested to include
deregulation of the PPARγ signaling [63]. The ability of
the tumor suppressor p53 under stress to differentially
regulate its target genes which regulate cell-cycle arrest,
apoptosis or senescence of hematopoietic stem cell (HSC)
could be a possible treatment target for leukemia [64].
However, there is progress in the development of drugs
based on OS mechanism. Some are on clinical trial stage,
for instance a potent NF-kB inhibitor, Deferasirox is on
clinical trial for the treatment of AML and MDS [65].
Another target of interest is the antiapoptotic transcrip-
tion factor, signal transducer and activator of transcription
3 (STAT3) which is modulated by OS. STAT3 is acti-
vated when spleen tyrosine kinase (SYK) is induced in
an ecdysone-inducible mammalian expression system.
The link between SYK and STAT3 is being explored
as a potential target for therapeutic purposes in human
B-lineage leukemia/lymphoma cells [66].

Sources/activators of antioxidants
To counter the deleterious effects of free radicals and OS
in the organelle, mitochondria also harbor antioxidants in-
cluding GSH and enzymes, (superoxide dismutase (SOD)
and glutathione peroxidase (GPx),) which are present on
both sides of their membranes [67]. Antioxidants could be
either endogenous or exogenous. The endogenous anti-
oxidants produced mostly in the mitochondria include
superoxide dismutase, (SOD), alpha lipoic acid (ALA),
Coenzyme Q10 (CoQ10), catalase (CAT), and glutathione
peroxidase (Gpx), glutathion (GSH), ferritin, uric acid, bili-
rubin, metallothioneine, L-carnitine and melatonin [68].
Exogenous antioxidants are acquired from diet such as
vitamin E (α-tocopherol) which is present in vegetable oil
and wheat germ. Vitamin E can prevent lipid peroxidation
of plasma membrane because it is lipid soluble [69]. Other
important exogenous antioxidants found in plants (fruits,
vegetables, medicinal herbs) include phenolic compounds
(phenolic acids, flavonoids, quinones, coumarins, lignans,
stilbenes, tannins etc.), nitrogen compounds (alkaloids,
amines, betalains), vitamins, and terpenoids (including
carotenoids) [70,71].

Mechanism of action of antioxidants
The most efficient enzymatic antioxidants are superoxide
dismutase (SOD) and catalase (CAT). SOD activity protects
cells from free radicals induced injury by catalyzing the
dismutation of O2•
− to O2 and to the less-reactive species

hydrogen peroxide (H2O2) [72]. The enzyme CAT on the
other hand catalyzes the conversion of H2O2 to water and
molecular oxygen. A cervical cancer based study to exam-
ine the relationship between OS and enzymatic antioxi-
dant status in the erythrocytes of adult cervical cancer
patients and healthy subjects showed a significant increase
in lipid peroxidation and impaired enzymatic antioxidant
activities in the erythrocytes of cervical cancer patients
[73]. Non-enzymatic antioxidants such as thiol antioxi-
dants and vitamin E also play vital antioxidant roles. Vita-
min E prevents lipid peroxidation and aging of cells [69].
Non-protein thiols have a variety of functions in biore-
duction and detoxification processes. Intracellular redox
homeostasis is regulated by thiol-containing molecules,
such as glutathione and thioredoxin [74]. Catalina et al.
evaluated the apoptotic effects of Cellfood™ (CF), a nutri-
tional supplement containing deuterium sulphate, min-
erals, amino acids, and enzymes, on three leukemic cell
lines including Jurkat, U937, and K562 cells, and reported
that this natural anti-oxidant extracted from the red algae
Lithothamnion calcareum, modulates cell signalling and
apoptosis in cancer cells by activating caspase 3, inducing
nucleosomal DNA frangmentation, and altering cell me-
tabolism through down-regulation of HIF-1α and GLUT-
1 expression [75]. In a study of the mitochondrial pathway
of apoptosis in HepG2 cells, Chang et al. [76] reported
that Norcantharidin, the demethylated analog of canthari-
din derived from a traditional Chinese medicine, Mylabris,
exerts its anti-cancer effects through induction of oxi-
dative stress leading to loss of mitochondrial membrane
potential, release of cytochrome c from the mitochondria
to the cytosol, down-regulation of Bcl-2, up-regulation
of Bax , caspase 3 and caspase 9, and subsequent cleav-
age of PARP.

Leukemia
Leukemia is one of the top 10 cancers affecting all races
in the United States [77]. Leukemia remains a public
health problem though there is a decline in annual death
rate when compared with the death rate in 1991 [78]. Ac-
cording to the American Cancer Society estimates, about
1,660,290 new cancer cases and 580,350 cancer deaths oc-
curred in the United States in 2013 and Leukemia account
for 48,610 new cases and about 23,720 deaths [78].
Leukemia is cancer of the blood or bone marrow cha-
racterized by an abnormal proliferation and circulation of
immature clonal hematopoietic cells. Diseases associated
with leukemia are commonly referred to as hematological
neoplasms and they constitute one of the 10 killer cancers
in the US and the most commonly diagnosed cancers and
leading causes of cancer death in children aged 0–19 years
[79,80]. In 2011 according to the National Cancer Insti-
tute’s Surveillance, Epidemiology, and End Results (SEER)
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program report, about 302,800 people were living with
leukemia in the United States. About 52,380 new cases are
estimated in 2014, which accounts for 3.1% of all new can-
cer cases. Also, 24,090 deaths are expected to occur in the
US in 2014 due to leukemia which represents 4.1% of all
cancer deaths [81]. Global deaths due to leukemia in 2010
were about 281,500 [82]. In 2000, leukemia accounted for
about 3% of the seven million deaths due to cancer and
about 0.35% of all deaths from any cause around the world
[83]. There is a racial divide in the prevalence of leukemia;
white American children are almost twice more likely to
develop leukemia than black American children and boys
are more likely to be affected than girls. Hispanics under
20 years of age are at the highest risk for leukemia, while
whites, Native Americans, Asians, and Alaska Natives are
at higher risk than blacks. Around 30 percent more men
than women are diagnosed with leukemia and die from
the disease [78]. But more than 90% of all leukemias are
diagnosed in adults with the peak incidence between 40
and 60 years [84].

Leukemogenesis
Leukemia develops when hematopoietic stem cells lose
the capacity to differentiate normally to mature blood
cells at different stages of their maturation and differen-
tiation [85]. Under normal process, all blood cells are
originate from blood stem cells with the myeloid path-
way producing red blood cells, platelets, and white blood
cells, and the lymphoid pathway generating different
types of lymphocytes [80]. This hematopoietic system
produces the required amount of blood cells during an
individual’s lifetime and it involves a carefully balanced
mechanism of differentiation, proliferation and self-renewal
[86]. The perturbation of this balance due to different
cellular conditions and external pressures may lead to
irregular differentiation of cell and premature generation
of immature/abnormal cells and presence of heteroge-
neous populations of genetically distinct sub-clones in
circulation causing the adverse effects associated with
different forms of tumors [87,88].
Table 1 Differentiating characteristics of the four types of leu

Type/Age at onset (Yr.) Gender predilection

Acute Lymphocytic (ALL) <15 Males

Acute Myelogenous (AML) 15 - 39 Equal incidence

Chronic Myelogenous (CML) > 50 Males
Types of leukemia
Leukemia are classified based on; onset (acute or chronic),
the affected blood cell type (lymphoblastic/lymphocytic or
myeloid/myelogenous), the maturity stage of the blood
cell and phenotypic expression of the disease. There are
four major clinical types of leukemia and there also
different pathological subtypes as shown in Table 1. The
common types of leukemia are; acute myeloid leukemia
(AML), acute lymphoblastic leukemia (ALL), chronic mye-
loid leukemia (CML), chronic lymphocytic leukemia (CLL),
and acute promyelocytic leukemia (APL) [87] as illustrated
in Figure 4. AML is further divided into eight subtypes
based on the cell the leukemia developed from: Mye-
loblastic (M0), Myeloblastic (M1) - without maturation,
Myeloblastic (M2) - with maturation, Promyeloctic (M3),
Myelomonocytic (M4), Monocytic (M5), Erythroleukemia
(M6) and Megakaryocytic (M7) [89]. Other sub-types
include; hairy cell leukemia, chronic myelomonocytic
leukemia (CMML), juvenile myelomonocytic leukemia
(JMML) is seen mostly in children and it could be cured
using hematopoietic stem cell transplantation (HSCT)
[79,90,91].

Acute myeloid leukemia
Acute myeloid leukemia (AML) known by different names
such as acute myelogenous leukemia, acute granulocyctic
leukemia or acute non-lymphocytic leukemia is a malig-
nant neoplasm that originates in the cells within the bone
marrow. AML can be divided into five main types: AML
with genetic abnormalities (e.g. t[8;21], t(15;17), t(9;22) ),
AML with FLT3 mutation, AML with multilineage dyspla-
sia, therapy-related AML, and uncategorized AML [84].
However, World Health Organization (WHO) compresses
AML types into three subgroups: (1) AML with recurrent
genetic abnormalities, (2) AML with multilineage dyspla-
sia, and (3) AML and MDS (myelodysplastic syndromes),
therapy related [92]. AML is the second most common
type of leukemia in children [93] and it affects heteroge-
neous group of tumor cell populations including myelo-
blast, myelocyte, promyelocyte, and myelomonocyte. It is
kemia

Racial predilection Cell of origin Specific markers

Caucasian B-cell CALLA+

Hyperdiploidy

TDT+

None Myeloblast TDT-

Myelocyte t(9;22)

Promyelocyte t(15;17)

Myelomonocyte

None Myeloid cell Ph1 chromosome



Figure 4 Major types of leukemia: AML- acute myeloid leukemia; ALL- acute lymphoblastic leukemia; CML- chronic myeloid leukemia;
CLL- chronic lymphoblastic leukemia.
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described as acute because AML progresses quickly with-
out treatment. Primitive myeloid cells are not well devel-
oped and cannot carry out the normal functions of the
blood cell [79]. As a result cellular and molecular activities
malfunction leading to DNA damage, increased prolif-
eration, deficient cell death, genetic instability and ROS-
induced OS [10,94,95]. MDS are malignant tumors that
closely resemble AML and may develop to AML [96].
MDS are characterized by cytopenias which predisposes
to infection, bleeding, and death [96]. Most AML can be
characterized by the expression of the common acute
lymphoblastic leukemia antigen (CALLA) which is a 749-
amino acid type II integral membrane protein [97]. WHO
recommends using the following cytogenetics parameters
to define AML to avoid ambiguity, mischaracterization
and misdiagnosis of AML; patients with the specific recur-
ring cytogenetic abnormalities t(8;21)(q22;q22), inv(16)
(p13q22) or t(16;16)(p13;q22), and t(15;17)(q22;q12) re-
gardless of the blast percentage [84]. Both genetic predis-
position and environmental risk factors such as radiation,
cigarette smoking and exposure to other environmen-
tal carcinogens have been linked to AML pathogen-
esis. A previous study by Zhuo et al. [98] pointed out
that CYP1A1 MspI polymorphism might be a possible
risk factor for AML in Asian populations. Prognosis
of AML is generally poor but best prognosis is with bone
marrow transplant [99]. Acute leukemia may also have blast
cells that are Sudan Black and terminal deoxynucleotidyl
transferase (TdT) positive [100]. The survival rate of AML
is very slim necessitating development of more effective
treatment therapies [101,102]. Treatment for AML may
include chemotherapy, radiation therapy, stem cell trans-
plant and/or immunotherapy [81,89].

Chronic Myelogenous Leukemia (CML)
CML also referred to as chronic myeloid, chronic mye-
locytic or chronic granulocytic leukemia, is a clonal my-
eloproliferative disorder in which transformed, primitive
hematopoietic progenitor cells are pushed into circula-
tion. CML is characterized by increased proliferation of
granulocytic cells without loss in their capacity to differ-
entiate. CML is characterized by the Philadelphia (Ph1)
chromosome and it is the first human disease malignancy
associated with a gene translocation in which a specific
abnormality of the karyotype could be linked to patho-
genic processes of leukemogenesis [103]. The Philadelphia
(Ph1) chromosome is created from the bcr-abl fusion gene,
which is a result of the reciprocal translocation between
the abl oncogene on the long arm of chromosome 9 and
the bcr region on the long arm of chromosome 22, t(9;22)
(q34;q11). The bcr-abl fusion gene is seen in more than
90% of CML cases [104,105]. Prognosis is generally poor
and it is worse if there is no Ph1 chromosome. In CML
the chronic phase is often followed by an accelerated blas-
tic phase, a more acute disease phase, which is generally
fatal [103]. In a study of CML pathogenesis, Long et al.
[106] evaluated the role of the Hedgehog (Hh) signal-
ing pathway, and reported that Hh-related genes such
as Sonic hedgehog (Shh), Smoothened (Smo), and Gli1
genes were significantly upregulated in CML patients when
compared with normal people. They concluded that Hh
signalling maybe associated with CML progression [106].
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Treatment for CML may include radiation therapy, che-
motherapy, stem cell transplant and/or immunotherapy. A
common treatment for chronic leukemias is oral chemo-
therapy such as Gleevec (imatinib), Sprycel (dasatinib) and
Tasigna (nilotinib) [89].

Chronic Myelomonocytic Leukemia (CMML)
CMML is an aggressive malignancy characterized by
ineffective hematopoiesis and peripheral monocytosis.
It was previously classified as a subtype of the myelodys-
plastic syndromes (MDSs) but was recently demonstrated
to be a distinct entity with distinct characteristics [107].
However, it is placed under mixed myelodysplastic/mye-
loproliferative disease in the WHO classification [108].
About 20 to 40 percent of CMML patients have chro-
mosomal abnormalities with 1 to 4 percent having trans-
location involving the PDGFR-β and TEL genes [90].
Chemotherapy with imatinib has been successful in the
treatment or patients with PDGFR-β and TEL gene muta-
tion [109].

Acute Promyelocytic Leukemia (APL)
APL is a form of acute myeloid leukemia in which
abnormal promyelocytes predominate and it can affect
both adults and children but mostly children [110]. The
over production of promyelocytes leads to a shortage of
normal white blood cells, red blood cells and platelets in
circulation, which causes many of the signs and symp-
toms observed in APL. General signs and symptoms
may occur as fever, loss of appetite, and weight loss
but disseminated intravascular coagulation is a common
symptom and could be life-threatening. Other signs of the
malignancy include leukopenia, susceptibility to develop-
ing bruises, small red dots under the skin (petechiae),
nosebleeds, bleeding from the gums, blood in the urine
(hematuria), or excessive menstrual bleeding [111], low
number of red blood cells (anemia), and excessive tired-
ness (fatigue). Some patients experience bones and joints
pains when the leukemic cells spread to the bones and
joints [110]. Genetic studies show that cells from most
patients have a balanced reciprocal translocation between
chromosomes 15 and 17 [112], which generates a fusion
transcript joining the PML(promyelocyte) and RAR-α (ret-
inoic acid receptor-α) genes [113]. The promyelocytic
leukemia gene (PML) involved in the t(15;17) (q22;q12)
translocation is a growth suppressor and pro-apoptotic
factor [114,115]. Disruption of the PML gene by the t
(15:17) translocation in APL could be critical in leuke-
mogenesis because accelerated cell proliferation was ob-
served when the PML gene was knocked-out [116,117].
APL is most often diagnosed around age 40, although it
can be diagnosed at any age. Prognosis is poorer in adults
than in children but prognosis is better than in AML and
it is curable in children [118]. A combination of All-trans
retinoic acid (ATRA) and arsenic trioxide (ATO) has been
effective in treating APL especially in newly diagnosed
patients. However, ATRA with anthracycline-based che-
motherapy for induction and consolidation and additional
use of low dose maintenance ATRA is considered as the
standard treatment protocol [110]. ATRA has been repor-
ted to exert its therapeutic action against APL cancer
through induction of cell differentiation via mechanisms
that include degradation of PML-RARA gene [119] and
inhibition of arachidonic acid metabolic pathway in other
cancer cells [119].

Acute Lymphoblastic Leukemia (ALL)
ALL is a disease characterized by uncontrolled prolifera-
tion and maturation arrest of lymphoid progenitor cells
in bone marrow resulting in an excess of malignant cells.
The lymphoblasts replace the normal marrow elements,
resulting in a marked decrease in the production of nor-
mal blood cells leading to varying degrees of anemia,
thrombocytopenia, and neutropenia [120]. ALL is the
most common cancer found in children and it accounts
for more than 50% of childhood hematopoietic malig-
nancies. But it is relatively rare in adults, accounting for
only 2–3% of hematopoietic malignancies [120]. Abnormal
expression of genes, which is usually a result of chromo-
somal translocations, is suggested as one of the causes of
ALL. The examination of the cytogenetic lesion in Ph(+) in
ALL shows that the translocation of most cases of ALL
with break point in the minor cluster region (m-BCR) give
rise to (P190) fusion protein [121]. A previous in-vitro
study using inhibitors of glycogen synthase kinase-3β
(GSK-3β) found that it significantly accumulates in the
nuclei of ALL cells compared to control cells; leading to a
downregulation of NF-κB-target Survivin gene and promo-
tion of apoptosis in ALL cells in vitro [122]. It is a curable
disease with an expected long term survival rate of at least
70%, when treated with modern therapeutic regimens. A
common chemotherapy treatment for ALL begins with
induction chemotherapy, in which a combination of drugs
is used to destroy as many leukemia cells as possible and
bring blood counts to normal [123]. This is followed by
consolidation chemotherapy, to destroy any remaining
leukemia cells that cannot be seen in the blood or bone
marrow. Patients with ALL may also receive maintenance
chemotherapy. This less intensive course of chemotherapy
is used to reduce the risk of the disease recurring after
treatment has finished [123].

Chronic Lymphocytic Leukemia (CLL)
CLL starts in B-cells in the bone marrow before invading
the blood. Leukemia cells take a long time to accumulate
in the peripheral blood, bone marrow, and lymphoid
tissues and may take a few years before symptoms start
showing up in many people [124]. In the United States
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about 15,720 new cases of CLL and 4,600 deaths will
occur in 2014 [125]. Most of CLL patients are the elderly,
with a median age at diagnosis of 72 years with more
males than females being affected. Also, more Caucasians
than African-Americans have CLL and rarely seen among
Hispanics, Native Americans, and Asian populations
[126]. The prognosis is poor and it is the only leukemia
with a possible genetic predisposition [124,126]. Features
of CLL include hypogammaglobulinemia and recurrent
infection due to compromised humoral and cellular im-
munity [127]. Another feature observed in CLL is Trisomy
12 and it is one of chromosomal abnormalities frequently
seen in B-cell CLL [128]. OS has been recognized to play
a role in CLL development and treatment response. A
recent study evaluating ROS-related damages in lympho-
cytes from patients with monoclonal B-lymphocytosis and
CLL reported increased levels of oxidatively modified
DNA and lipids in the sera of untreated CLL patients due
to increased oxidative phosphorylation in CLL cells.
Furthermore, CLL cells adapted to intrinsic OS by up-
regulating the stress-responsive heme-oxygenase-1 (HO-1)
[117]. Ibrutinib is approved for the treatment of patients
with CLL who have received at least one prior therapy. It is
also approved for relapsed/refractory mantle-cell lymph-
oma patients [129]. Hairy cell leukemia is a type of chronic
lymphocytic leukemia [130].

Leukemia and reactive oxygen species
It is well recognized that oxidants play a role in several
stages of carcinogenesis [53]. OS is associated with nu-
merous pathological phenomena, including infection,
inflammation, ultraviolet- and γ-irradiation, increased
mutation frequency [79] and acute promyelocytic leukemia
[131]. Increased free radical generation, especially super-
oxide anion in leukemia patients and increased antioxidant
defense enzymes, which is an adaptive protective response,
are indicative of mild OS [43]. Several studies have im-
plicated OS as a factor in carcinogenesis [132,133]. Some
endogenous oxidants are considered as important naturally
occurring carcinogens and may contribute to several stages
of malignant transformation [134,135]. ROS can induce
genetic mutations as well as chromosomal alterations and
thus contribute to cancer development in multistep car-
cinogenesis [133,136]. ROS also can trigger intercellular
secondary messengers and thus modulate various aspects
of cellular functions including proliferation, apoptosis, and
gene expression [137]. ROS initiate carcinogenesis by
activating kinases, denaturing DNA through induction
of poly ADP-ribosylation of chromosomal proteins [134].
Cell damage from oxygen free radicals (OFR) is ubiquitous
and may be significant in the expansion of tumor clones
and the acquisition of malignant properties [135]. Stress-
activated signaling cascades are affected by altered redox
potential due to ROS formed by exogenous genotoxic
agents such as irradiation, inflammatory cytokines and
chemical carcinogens. ROS and altered redox potential
can be considered as the primary intracellular changes
which regulate protein kinases, thus serving as an import-
ant cellular component linking external stimuli with signal
transduction in stress response [137]. As observed earlier,
various antioxidants are decreased in cancer, SOD and
CAT activities were decreased in ALL patients. Reduced
CAT activity was observed in just diagnosed patients and
patients in both treatment groups suggesting a disturb-
ance of the protective role of these enzymes against free
radicals in ALL and chronic lymphocytic leukemia (CLL)
[10,138]. Nishiura et al. reported elevated serum SOD
activity in acute leukemia and indicated that regression of
the leukemia was accompanied by a decrease in the serum
level of SOD [139]. Likewise, there is GSH depletion in
lymphocytes isolated from the blood of patients with CLL
[140]. These findings suggest that there are alterations in
the enzymatic antioxidant defenses, which can interfere in
the direct removal of free radicals (pro-oxidants) and
in the protection for biological sites [141].

Oxidative stress in leukemia treatment
Traditionally, the appropriate treatment for any leukemia
disease depends mainly on the type of leukemia, age, and
general health of the patient [89]. The current cytotoxic
drugs used in standard leukemia therapy are designed to
attack DNA replication process within malignant cells,
and it does not discriminate between malignant and non-
malignant cells since it targets cell proliferation [142].
Adding to the toxic side effects of standard chemotherapy
is the issues of drug resistance from quiescent clones
[143]. These make discovery of new treatments measures
for leukemia very imperative. Targeting ROS level could
be a novel approach since ROS levels are higher in malig-
nant cell than in non-malignant cells. Despite the negative
effect of oxidants some of their mechanisms of action
have found application in the treatment of malignant
diseases [6]. Conversely, there are reports showing that
antioxidative conditions promote some carcinogenic pro-
cesses [144]. Both antioxidant and oxidants processes are
being explored for treatment of hematologic malignancy.
Lau and co-authors in their review discussed the potential
applications of ROS in leukemia treatment [6]. As illus-
trated in Figure 5, there two approaches applied in using
ROS for leukemia treatment; oxidant treatment and anti-
oxidant treatment. The oxidant approaches may cause cell
death by: increasing ROS, lipid peroxidation, protein
oxidation and mutation, increasing mitochondria stress,
apoptosis, and activation of a G2/M phase cell cycle check-
point [145]. The antioxidant mechanism uses the following
reactions to balance the negative effect of the oxidant pro-
cesses: reduced ROS signalling, reduced proliferative drive,
and suppression of cell cycle which may reduce tumor



Figure 5 Antioxidant treatment versus pro-oxidant treatment as a therapy for hematologic malignancy.
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burden and buffer nonmalignant cells from oxidative dam-
age [146]. A combination of antioxidants and chemothera-
peutic agents have promising synergistic effect, however,
some argue that suppression of cell cycle and antagonism
of chemotherapy-induced ROS may also affect treatment
efficacy [147]. Vitamin antioxidants have been shown
to reduce the risk of various cancers by suppressing
the state of OS [148,149]. Likewise, antioxidant vitamins C
and E from supplements have shown promises in reducing
risk of ovarian cancer [149].
Pro-oxidant treatment may cause depletion of antioxi-

dant defenses leading to more production of ROS beyond
the level produced by the malignant cell [31]. Although it
may be difficult it is very important to determine the
optimum level of ROS that will be most efficient and ef-
fective in the treatment of Leukemia, only a thin line sepa-
rates the beneficial level and deleterious level of ROS
[150]. For instance when the intrinsic stress that is already
present in malignant cells is doubled by the treatment-
induced OS malignant cells can be sensitized to mainstay
treatments or initiate the apoptotic pathway [31]. It can
conversely trigger lipid peroxidation, oxidation of redox-
sensitive residues within proteins, and DNA oxidation
leading to increased tumor burden [147,150]. As observed
with proxidants, extramitochondrial antioxidants such as
vitamin C (ascorbic acid) can act both as prooxidant and
as antioxidant [144].
Bortezomib-induced oxidative cell injury function at a

proximal point in the cell death cascade to attack and
disrupt cytoprotective ERK1/2 signaling. The JNK path-
way, is activated followed by induction of mitochondrial
dysfunction, caspase activation, and apoptotic cell death
[151]. Anthracycline daunorubicin is widely used in the
treatment of acute nonlymphocytic leukemia and oxida-
tive stress is one of the triggers of the body’s response to
this drug [152]. In a study from our laboratory we dem-
onstrated that dietary supplement such as garlic induces
cytotoxicity and apoptosis in HL-60 cells through phos-
phatidylserine externalization, caspase-3 activation, and
nucleosomal DNA fragmentation associated with the
formation of malondialdehyde, a by-product of lipid per-
oxidation and biomarker of OS [153].
Application of antioxidant principles may illicit same

effect, for example inhibition of intracellular antioxi-
dants such as GSH [154] and heme oxygenase-1 (HO-1)
[155]. Isothiocyanates and adaphostine are other pro-
oxidant drugs. Isothiocyanates act by depleting GSH pools,
and efficiently kill fludarabine-resistant chronic lympho-
cytic leukemia (CLL) cells [156] and imatinib-resistant
CML cells, [157] selectively without attacking normal he-
matopoietic cells. Adaphostine, a tyrphostin kinase inhibi-
tor is able to induce up-regulation of ROS and cause DNA
damage-induced apoptosis in BCR-ABL–expressing CML
[158]. Other leukemic drugs that have pro-oxidant proper-
ties include arsenic trioxide (ATO) which is currently used
for treatment of relapsed APL which may function by
inhibiting thioredoxin [159], inducing ROS production
[160] or NOX activation [161]. However, Jeanne and co-
researchers suggest that ATO-induced ROS production
plays a critical role in degradation of PML-RARα fusion
proteins in ATO-treated APL cells [162]. Isothiocyanates
when used together with ATO were effective in killing
CML- and AML-derived cell lines in vitro [163]. In a re-
cent in vitro study, we demonstrated that OS plays a key
role in ATO-induced mitochondrial pathway of apoptosis
in HL-60 cells. We discovered that this apoptotic signaling
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is associated with DNA damage, change in mitochondrial
membrane potential, activation and translocation of pro-
apoptotic proteins, and down regulation of anti-apoptotic
proteins [2]. These findings are in support of previous
research from our laboratory reporting phosphatidylserine
externalization and caspase 3 activation and nucleosomal
DNA fragmentation in HL-60 cells exposed to ATO [164].
A recent study from our laboratory has also demonstrated
that vitamin D3 (Vit D3) potentiates the antitumor effect
of ATO in HL-60 cells. This potentiation is mediated
at least in part, through induction of phosphatidylserine
externalization and nucleosomal DNA fragmentation [165].
Also, we previously reported similar potentiation of ATO
effect by vitamin C [166,167]. These findings highlight the
potential impact of Vit C and Vit D3 in promoting the
pharmacological effect of ATO, suggesting a possible
future role of Vit C/Vit D3/ATO combination therapy
in patients with acute promyelocytic leukemia.
Antioxidant molecules can be used to suppress the

high levels of ROS observed in some cancer cells. For
example targeting NOX4-derived ROS which promotes
survival in some pancreatic cancers could be effective in
growth arrest [168]. Also, antioxidant treatment may
alleviate chemotherapy-related toxicity, reducing the re-
quirement for dose reduction in some patients and allow-
ing an increased proportion of patients to complete their
therapy [169]. Another study demonstrated a trend of
longer clinical progression-free survival and overall sur-
vival in CML patients when they were treated with
vitamin A in combination with standard chemotherapy,
although this trend was not significant [170]. Figure 5
illustrates the involvement of oxidant and antioxidant
treatment in the control of leukemia cancer.

Conclusions
OS has both beneficial and negative effect on leukemo-
genesis. Most of the genes that regulate the redox pro-
cesses have double edged sword activities. This makes it
difficult to determine the optimum point to harness the
therapeutic attributes because only a very thin line sepa-
rates the oncogenic properties from the tumor suppressive
activity. A better understanding of the relationship be-
tween OS and leukemogenesis will give more insight on
how to ameliorate its deleterious effect and how to tap
unto the beneficial attributes. It is known that ROS causes
nonspecific oxidative damage to biomolecules in myeloid
cells, under this condition there is a persistent increase in
ROS level and depletion of the cell’s antioxidant defenses
culminating in cancer induction. Another process is the
hyperactivation of ROS signaling pathway. Significant pro-
gress has been made in developing therapeutic measures
for various types of leukemia and some can be cured while
treatment for some such as, myeloid leukemia are still
difficult. New effective therapeutic strategies are needed.
Increased OS in some myeloid leukemia may be a promis-
ing therapeutic target. Despite the negative effect of OS to
the cell, tapping into the possible application of its activ-
ities for therapeutic capabilities is worth pursuing because
even the current leukemia treatment drugs have cytotoxic
effects as well. Further studies are required to determine
the source and species of ROS generated by leukemic cells
and whether the ROS that has therapeutic effects originate
from the normal cell metabolism or from the malignant
cell population. The knowledge that OS induces lipid per-
oxidation and protein carbonylation by inactivating anti-
oxidant enzymes could be used to determine an efficient
and effective way to boost endogenous production and in-
corporation of antioxidants into diets to neutralize the free
radical produced by cellular metabolisms. This may serve
as potent prophylaxis for various leukemia since most
cancers develop under OS environment. It is heartening
that some drugs based on oxidative mechanisms are on
clinical trial stage. Further studies are needed to under-
stand the effectiveness, long time effect and consequences
of using such drugs.
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