38 research outputs found
Wintering avifauna of Chaco and pantanal habitats in Bahía Negra (Northern Paraguay)
Se estudió la avifauna de hábitats típicos de dos ecorregiones, el Pantanal y el Chaco, en el norte de Paraguay (departamento de Alto Paraguay) mediante transectas y observaciones puntuales. Se detectaron 132 especies (109 en bosque y 75 en río), de las cuales 37 utilizaban además hábitats modificados. Las especies más abundantes fueron <i>Phalacrocorax olivaceus</i>, <i>Pitangus sulphuratus</i> y <i>Gnorimopsar chopi</i> en el río y <i>Agelaioides badius</i>, <i>Coryphospingus cucullatus</i> y <i>Sicalis luteola</i> en el bosque. Doce especies en el río y 11 en el bosque aparecieron en el 100% de los recorridos de las transectas, siendo 5 de ellas comunes a ambas zonas. Siete especies (6.4%) del bosque tuvieron un tamaño promedio de grupo de cinco o más individuos, mientras que en el río fueron seis (8%). En el bosque eran numerosas las bandadas mixtas de <i>Zonotrichia capensis</i>, <i>Sicalis luteola</i>, <i>Coryphospingus cucullatus</i>, <i>Paroaria coronata</i>, <i>Agelaioides badius</i> y <i>Molothrus bonariensis</i>. La diversidad de especies observada fue de 80.4 en el bosque y de 58.1 en el río.The avifauna of habitats typical of two ecoregions in northern Paraguay (Alto Paraguay Department), Chaco and Pantanal, was studied through transects and opportunistic observations. Of 132 species recorded, 109 were in the forest, 75 in the river, and 37 in disturbed habitats. The most common species were <i>Phalacrocorax olivaceus, Pitangus sulphuratus</i> and <i>Gnorimopsar chopi</i> in the river, and <i>Agelaioides badius, Coryphospingus cucullatus</i> and <i>Sicalis luteola</i> in the forest. Twelve species of river habitats and 11 species of forest habitats were recorded in all samplings, five of them common to both zones. Seven species (6.4%) of the forest and six (8%) of the river averaged a flock size of five or more individuals. In the forest, flocks were numerous and composed primarily of <i>Zonotrichia capensis, Sicalis luteola, Coryphospingus cucullatus, Paroaria coronata, Agelaioides badius</i> and <i>Molothrus bonariensis</i>. Species diversity was 80.4 in the forest and 58.1 in the river
Anticipating where are unknown aquatic insects in Europe to improve biodiversity conservation
Aim: Understanding biodiversity patterns is crucial for prioritizing future conservation efforts and reducing the current rates of biodiversity loss. However, a large proportion of species remain undescribed (i.e. unknown biodiversity), hindering our ability to conduct this task. This phenomenon, known as the ‘Linnean shortfall’, is especially relevant in highly diverse, yet endangered, taxonomic groups, such as insects. Here we explore the distributions of recently described freshwater insect species in Europe to (1) infer the potential location of unknown biodiversity hotspots and (2) determine the variables that can anticipate the distribution of unknown biodiversity. Location: The European continent, including western Russia, Cyprus and Turkey. Methods: Georeferenced information of all sites where new aquatic insect species were described across Europe from 2000 to 2020 was compiled. In order to understand the observed spatial patterns in richness of recently described species, spatial units were defined (level 6 of HydroBASINS) and associated with a combination of a set of socioeconomic, environmental and sampling effort descriptors. A zero-inflated Poisson regression approach was used to model the richness of newly described species within each spatial unit. Results: Nine hundred and sixty-six recently described species were found: 398 Diptera, 362 Trichoptera, 105 Coleoptera, 66 Plecoptera, 28 Ephemeroptera, 3 Neuroptera, 2 Lepidoptera and 2 Odonata. The Mediterranean Basin was the region with the highest number of recently described species (74%). The richness of recently described species per spatial unit across Europe was highest at mid-elevation areas (between 400 and 1000 m), latitudes between 40 and 50° and in areas with yearly average precipitation levels of 500–1000 mm, a medium intensity of sampling effort and low population density. The percentage of protected areas in each study unit was not significantly related to the richness of recently described species. In fact, 70% of the species were found outside protected areas. Main conclusions: The results highlight the urgent need to concentrate conservation efforts in freshwater ecosystems located at mid-altitude areas and out of protected areas across the Mediterranean Basin. The highest number of newly described species in those areas indicates that further monitoring efforts are required to ensure the aquatic biodiversity is adequately known and managed within a context of growing human impacts in freshwater ecosystems.Generalitat de Catalunya 2017SGR1643Ministerio de Ciencia e Innovación TED2021-130328B-I00, RYC2019-027446-
Actualización del Museo Virtual de Zoología (II): ampliación de contenido y adaptación a diferentes tipos de pantallas y dispositivos
El proyecto de Innovación Docente Básico “Actualización del Museo Virtual de Zoología (II): ampliación de contenido y adaptación a diferentes tipos de pantallas y dispositivos” ha tenido por objetivos: 1. Adaptar la estructura informática al acceso desde dispositivos móviles con distinto tamaño de pantalla y permitir la edición de contenidos sin conocimientos de programación. 2. Ampliar y diversificar el contenido relacionado con cada una de las 300 especies incluidas en la web (videos, documentales, páginas webs especializadas, artículos y libros). - La adaptación de la estructura informática ha sido realizada por una empresa de consultores informáticos (julio-diciembre 2020). - Preparación de la editabilidad de las fichas del MVZ (diciembre 2020- mayo 2021), realizada por la misma empresa. - Simultáneamente el equipo del proyecto ha ido añadiendo las referencias del material sugerido en un documento Excel compartido. Todo ese material ha ido enlazando a la información ya disponible. Esta parte ha tardado más de lo esperado en realizarse por la dificultad en la búsqueda de los videos más relevantes en el aspecto docente, habiéndose extendido bastante en el tiempo (hasta febrero de 2022). - Volcado de la información ampliada en la estructura de la web (mayo 2021- marzo 2022). Todos los logros propuestos en el proyecto se han llevado a cabo y la evaluación de la herramienta ha sido satisfactoria, aunque siempre surgen cambios taxonómicos y novedades por corregir. Con la facilidad de la editabilidad de las fichas, estos cambios pueden realizarse por el personal técnico encargado de la colección. La aplicación práctica a la docencia de las asignaturas es muy importante, incluso se les recomienda a los alumnos el uso de la web para la preparación del examen práctico de las asignaturas de Zoología (grados Biología y Ciencias Ambientales) a través de PRADO.The project Update of the Virtual Museum of Zoology (II): expansion of content and adaptation to different types of screens and devices has had the following objectives: 1. To adapt the website structure so that it can be accessed from mobile devices with different screen sizes and to allow content editing without programming knowledge. 2. To expand and diversify the content related to each of the species included on the website (videos, specialised web pages, bibliography). - The adaptation of the website structure has been carried out by a company of IT consultants (July-December 2020). - Preparation of the editability of the VMZ data sheets (December 2020- May 2021) by the same company. - Simultaneously, the project team has been adding the references of the suggested material in a shared Excel document. All this material will be linked to the information already available. This part of the project has taken longer than expected due to the difficulty in finding the most relevant videos in the teaching aspect lasting until February 2022. - Uploading of the extended information in the web structure (May 2021- March 2022). All the goals proposed in the project have been achieved and the evaluation of the tool by the project team has been satisfactory, although there are always taxonomic changes and novelties to be corrected. With the ease of editing the cards, these changes can be made by the technical staff in charge of the collection. The practical application to teaching is very important, and students are even recommended to use the web for preparing the practical exam of the Zoology subjects (Biology and Environmental Sciences degrees) through PRADO.Unidad de calidad, innovación docente y prospectiva. Plan de Formación e Innovación Docente 2020-2022. Universidad de Granad
Predicting River Macroinvertebrate Communities Distributional Shifts under Future Global Change Scenarios in the Spanish Mediterranean Area
Several studies on global change over the next century predict increases in mean air temperatures of between 1°C to 5°C that would affect not only water temperature but also river flow. Climate is the predominant environmental driver of thermal and flow regimes of freshwater ecosystems, determining survival, growth, metabolism, phenology and behaviour as well as biotic interactions of aquatic fauna. Thus, these changes would also have consequences for species phenology, their distribution range, and the composition and dynamics of communities. These effects are expected to be especially severe in the Mediterranean basin due its particular climate conditions, seriously threatening Southern European ecosystems. In addition, species with restricted distributions and narrow ecological requirements, such as those living in the headwaters of rivers, will be severely affected. The study area corresponds to the Spanish Mediterranean and Balearic Islands, delimited by the Köppen climate boundary. With the application of the MEDPACS (MEDiterranean Prediction And Classification System) predictive approach, the macroinvertebrate community was predicted for current conditions and compared with three posible scenarios of watertemperature increase and its associated water flow reductions. The results indicate that the aquatic macroinvertebrate communities will undergo a drastic impact, with reductions in taxa richness for each scenario in relation to simulated current conditions, accompanied by changes in the taxa distribution pattern. Accordingly, the distribution area of most of the taxa (65.96%) inhabiting the mid-high elevations would contract and rise in altitude. Thus, families containing a great number of generalist species will move upstream to colonize new zones with lower water temperatures. By contrast, more vulnerable taxa will undergo reductions in their distribution area.This work was funded by GUADALMED-II (REN2001-3438-C07-06/HID), a project of excellence from “Junta de Andalucía” (RNM-02654/FEDER), the Spanish “Ministerio de Ciencia e Innovación” (CGL2007-61856/BOS), projects and a collaboration agreement between the “Spanish Ministerio de Medio Ambiente, Medio Rural y Marino” and the University of Granada (21.812-0062/8511)
Listado de especies y subespecies cavernícolas (hipogeas) consideradas como troglobias y estigobias de la península ibérica e islas Baleares
La fauna hipogea o cavernícola ibero-balear ha sido a lo largo de muchos años puesta en evidencia por numerosos zoólogos en las distintas disciplinas. Especialistas de los distintos grupos faunísticos capaces de colonizar las cuevas y las aguas subterráneas que las recorren. Hoy sabemos que esta diversidad de troglobios y estigobios alcanza un total de 1364 taxones: 1285 especies y 79 subespecies hipogeas (cavernícolas) pertenecientes a cuatro filos: Plathyhelminthes (2), Annelida (23), Mollusca (122) y Arthropoda (1217) en todo el territorio ibero-balear. Una fauna que cuenta con numerosos ejemplos de elementos relictos de especial interés paleogeográfico. De la totalidad de taxones hipogeos o cavernícolas del territorio ibero balear, 438 taxones (430 especies y 8 subespecies) son estigobios y 926 taxones (852 especies y 74 subespecies) son troglobios. En lo referente a la distribución de los taxones troglobios es el distrito Cantábrico el que posee una mayor riqueza en especies y subespecies, un total de 208, seguido del Vasco con 163 taxones, el Pirenaico con 153 y el Bético con 142. Algo menos diversos son los distritos Levantino (124 taxones) y Catalán (104 taxones), seguidos de lejos por el Lusitánico con 46 taxones, el Balear con 41 y el Central con tan sólo 19. Entre los estigobios 156 especies y subespecies pueblan las aguas subterráneas de las regiones delimitadas por las cuecas lusitánicas. Le siguen en diversidad las cuencas pirenaicas con 154 taxones estigobios, las béticas con 114 y por último las aguas del subsuelo de las cuencas baleáricas con 47 taxones estigobios, algunos de los cuales son talaso-estigobios, propios de las aguas marinas costeras
Enderleina khazeni Derka & Figueroa, 2013, n. sp.
Enderleina khazeni n. sp. Derka & Tierno de Figueroa Figs. 1 a–d. Type material. Holotype: Venezuela, Bolívar Province, Gran Sabana, Río Tarota, below the road to Santa Elena de Uairén, 1,320 m a.s.l., 5 º 48 ’ 57 ’’ N, 61 º 25 ’ 8 ’’ W, 19 -XI-2011, 1 male, Derka leg. Paratype: Venezuela, Bolívar Province, Gran Sabana, Río Torón, above Salto Toroncito, 1,384 m a. s. l., 5 º 43 ’ 37 ’’ N, 61 º 36 ’ 35 ’’ W, 20 -XI-2011, 1 male, Semelbauer leg. The holotype and paratype are deposited in the Collection of the Musée Cantonal de Zoologie (Lausanne, Switzerland) with the registration numbers, 69029 for the holotype and 69030 for the paratype. Type locality. Río Tarota, Bolívar Province, Venezuela. Etymology. The species is named after Frank Khazen, a great person, Gran Sabana expert and friend of TD, who unexpectedly passed away in March 2012. Description. Male holotype (Fig. 1 a–d): Total length: 12 mm, Forewing: 12.6 mm. General colour brownish black except the prothorax (both dorsally and ventrally) that is orange in the living specimen and yellow once preserved (Fig. 1 a). Antennae black, lighter proximally. Three ocelli, the anterior one smaller. Mouth parts light brown. Wings infuscated with brown. Legs, abdomen and cerci black. Cerci with long and abundant setae. Abdomen hairy (Fig. 1 b–c). Sternum IX wider than long (1.25 wide/long) with long dark bristles and a pale, rounded and flattened hammer (0.15 mm diameter) (Fig. 1 c). Hammer set on a dark band with two elongated, adjacent, pale areas. Paraproct laterally pointed. Aedeagus with a median, triangular shaped sclerite and a pair of long, slender basolateral spines (Fig. 1 d). Each spine bearing ventrally an enlarged, subapical fan-shaped structure which terminates in a blade-like structure extending to midlength of the median sclerite. Aedeagus with numerous spine-like setae. The male paratype differs from the holotype slightly in size (total length: 9.3 mm, forewing: 12.4 mm) and coloration (mouth parts and ventral part of the head pale brown-orange, and body slightly paler ventrally than the holotype). Affinities: The male of E. khazeni can be clearly distinguished from the males of E. preclara, E. yano and E. froehlichi mainly by the shape of the penial sclerites and of the paraprocts (Jewett 1960; Stark 1989; Ribeiro-Ferreira & Rafael 2005). The spines are narrowed in the apical third of the penial sclerites in E. preclara, whereas in E. yano they are more gradually tapered, in E. froehlichi they are considerably stronger, and in E. khazeni they have a characteristic shape ventrally extending as an enlarged fan-shaped structure, dorsally terminating in a blade-shaped structure. Moreover, dorsally the spines in E. khazeni reach near the apex of the median sclerite, whereas in E. preclara and E. froehlichi these structures are considerably shorter. The paraprocts are laterally pointed in E. khazeni, not slightly notched at the tip as in E. yano, they lack a subapical denticle as in E. froehlichi, and they are not bulbous at the apex as in E. preclara. Enderleina khazeni can be also distinguished from E. yano and E. froehlichi by their coloration: E. yano has a narrow orange V-mark connecting the antennal bases and anterior ocellus, and the basal half of the femora are yellow (according to Stark 1989), and E. froehlichi has a pale brown body. Enderleina preclara is similar to E. khazeni in colour, but the latter has two large pale areas laterally on sternum IX, not mentioned or illustrated by Jewett (1960) in the description of E. preclara. Despite the previous list of differences, E. khazeni seems to be more closely related to E. preclara, and it is the species found in closest proximity. Ecological notes. The holotype was captured by light trapping. The type locality is ca. 10 m wide and up to 1 m deep with riffles and small cascades. The substrate consists primarily of boulders (megalithal) and stones (macro- and mesolithal) and some aquatic macrophytes. Water temperature was 21 °C, pH = 5.89. The paratype was captured netting on the bank of a medium sized river with stony substrate (mega- and mesolithal), water temperature 20.1 °C, pH = 5.6. Both rivers are surrounded by savannas and remnants of riparian forests.Published as part of Derka, Tomáš & Figueroa, J. Manuel Tierno De, 2013, Enderleina khazeni n. sp. (Plecoptera, Perlidae), a new stonefly from Venezuelan Guayana, pp. 75-78 in Zootaxa 3619 (1) on page 76, DOI: 10.11646/zootaxa.3619.1.5, http://zenodo.org/record/22011
Enderleina preclara Jewett, 1960 (Plecoptera, Perlidae), from the Venezuelan Guayana-A description of a putative female, nymph and egg
Derka, Tomáš, Figueroa, J. Manuel Tierno De, Čiampor, Fedor (2019): Enderleina preclara Jewett, 1960 (Plecoptera, Perlidae), from the Venezuelan Guayana-A description of a putative female, nymph and egg. Zootaxa 4585 (2): 332-342, DOI: https://doi.org/10.11646/zootaxa.4585.2.
Enderleina Jewett 1960
Key to the adult males of Enderleina 1 Head and pronotum light brown................................................................. E. froehlichi - Head dark brown or brown with some yellowish areas, pronotum orange.......................................... 2 2 Pronotum orange, medially with a pair of dark bands, external margins of frons yellowish white, brownish orange to yellowish white M-mark connecting antennal bases and anterior ocellus, legs brown................................ E. bifasciata - Pronotum orange without dark bands...................................................................... 3 3 Head dark brown with narrow orange V-mark connecting antennal bases and anterior ocellus, basal half of femora yellow, apical half and tibia dark brown, penial sclerites as in Fig. 7 in Stark (1989).................................... E. yano - Head uniformly brown, legs brown, penial sclerites with different shape..........................................4 4 Two large pale areas laterally on sternum IX, penial sclerites with a characteristic shape extending ventrally as an enlarged fanshaped structure, terminating dorsally in a blade-shaped structure; dorsally, the spines reach near the apex of the median sclerite, paraprocts laterally pointed................................................................... E. khazeni - Sternum IX uniformly brown, the spines of penial sclerites are narrowed in the apical third of the penial sclerites, without any enlarged fan-shaped structure; dorsally, the spines are considerably shorter, never reaching near the apex of the median sclerite, paraprocts bulbous in the apex.................................................................. E. preclaraPublished as part of Derka, Tomáš, Figueroa, J. Manuel Tierno De & Čiampor, Fedor, 2019, Enderleina preclara Jewett, 1960 (Plecoptera, Perlidae), from the Venezuelan Guayana-A description of a putative female, nymph and egg, pp. 332-342 in Zootaxa 4585 (2) on page 339, DOI: 10.11646/zootaxa.4585.2.6, http://zenodo.org/record/263738