173 research outputs found

    Modeling of polyethylene, poly(l-lactide), and CNT composites: a dissipative particle dynamics study

    Get PDF
    Dissipative particle dynamics (DPD), a mesoscopic simulation approach, is used to investigate the effect of volume fraction of polyethylene (PE) and poly(l-lactide) (PLLA) on the structural property of the immiscible PE/PLLA/carbon nanotube in a system. In this work, the interaction parameter in DPD simulation, related to the Flory-Huggins interaction parameter χ, is estimated by the calculation of mixing energy for each pair of components in molecular dynamics simulation. Volume fraction and mixing methods clearly affect the equilibrated structure. Even if the volume fraction is different, micro-structures are similar when the equilibrated structures are different. Unlike the blend system, where no relationship exists between the micro-structure and the equilibrated structure, in the di-block copolymer system, the micro-structure and equilibrated structure have specific relationships

    Using Sidereal Rotation Period Expressions to Calculate the Sun’s Rotation Period through Observation of Sunspots

    Get PDF
    We utilize sidereal rotation period expressions to calculate the sun’s rotation period via sunspot observation. From the well-known astronomical sites, we collected sunspot diagrams for 14 months, from January 2013 to February 2014, to analyze, compare, and implement statistical research. In addition to acquiring the average angular rate of the movement of sunspots, we found that even the same number of sunspots moved at different angular rates, and generally the life of larger sunspots is longer than 10 days. Therefore the larger sunspots moved around the back of the sun, and a handful of relatively smaller sunspots disappeared within a few days. The results show that the solar rotation period varied with the latitude. However, if we take the average of the sunspots at high and low latitudes, we find that the calculated value is very close to the accredited values

    Potassium {4-[(3S,6S,9S)-3,6-dibenzyl-9-isopropyl-4,7,10-trioxo-11–oxa-2,5,8-triazadodecyl]phenyl}trifluoroborate

    Get PDF
    [[abstract]]The reported compound 4 was synthesized and fully characterized by 1H NMR, 13C NMR, 11B NMR, 19F NMR, and high resolution mass spectrometry.[[booktype]]電子版[[countrycodes]]CH

    A New Magnetic Topological Quantum Material Candidate by Design

    Full text link
    Magnetism, when combined with an unconventional electronic band structure, can give rise to forefront electronic properties such as the quantum anomalous Hall effect, axion electrodynamics, and Majorana fermions. Here we report the characterization of high-quality crystals of EuSn2_2P2_2, a new quantum material specifically designed to engender unconventional electronic states plus magnetism. EuSn2_2P2_2 has a layered, Bi2_2Te3_3-type structure. Ferromagnetic interactions dominate the Curie-Weiss susceptibility, but a transition to antiferromagnetic ordering occurs near 30 K. Neutron diffraction reveals that this is due to two-dimensional ferromagnetic spin alignment within individual Eu layers and antiferromagnetic alignment between layers - this magnetic state surrounds the Sn-P layers at low temperatures. The bulk electrical resistivity is sensitive to the magnetism. Electronic structure calculations reveal that EuSn2_2P2_2 might be a strong topological insulator, which can be a new magnetic topological quantum material (MTQM) candidate. The calculations show that surface states should be present, and they are indeed observed by ARPES measurements.Comment: 30 page, 12 figure

    Comparison of Immediate and 2-Year Outcomes between Excimer Laser-Assisted Angioplasty with Spot Stent and Primary Stenting in Intermediate to Long Femoropopliteal Disease

    Get PDF
    Background. To compare the clinical outcomes between excimer laser-assisted angioplasty (ELA) with spot stent (group A) and primary stenting (group B) in intermediate to long femoropopliteal disease. Methods. Outcomes of 105 patients totaling 119 legs treated with two different strategies were analyzed retrospectively in a prospectively maintained database. Results. Baseline characteristics were similar in both groups. Better angiographic results and lesser increase of serum C-reactive protein levels (0.60 ± 0.72 versus 2.98 ± 0.97 mg/dL, P<0.001) after the intervention were obtained in Group B. Group A had inferior 1-year outcomes due to higher rate of binary restenosis (67% versus 32%, P=0.001) and lower rate of primary patency (40% versus 58%, P=0.039). Rates of amputation-free survival, target vessel revascularization, assisted primary patency, and stent fracture at 24 months were similar in both groups (80% versus 82%, P=0.979, 65% versus 45%, P=0.11, 78% versus 80%, P=0.75 and 6.3% versus 6.8%, P=0.71, resp.). Conclusion. Greater vascular inflammation after ELA with spot stent resulted in earlier restenosis and inferior 1-year clinical outcomes than primary stenting. This benefit was lost in the primary stenting group at 2 years due to late catch-up restenosis. Active surveillance with prompt intervention was required to maintain the vessel patency

    Comparison of coplanar and noncoplanar intensity-modulated radiation therapy and helical tomotherapy for hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To compare the differences in dose-volume data among coplanar intensity modulated radiotherapy (IMRT), noncoplanar IMRT, and helical tomotherapy (HT) among patients with hepatocellular carcinoma (HCC) and portal vein thrombosis (PVT).</p> <p>Methods</p> <p>Nine patients with unresectable HCC and PVT underwent step and shoot coplanar IMRT with intent to deliver 46 - 54 Gy to the tumor and portal vein. The volume of liver received 30Gy was set to keep less than 30% of whole normal liver (V30 < 30%). The mean dose to at least one side of kidney was kept below 23 Gy, and 50 Gy as for stomach. The maximum dose was kept below 47 Gy for spinal cord. Several parameters including mean hepatic dose, percent volume of normal liver with radiation dose at X Gy (Vx), uniformity index, conformal index, and doses to organs at risk were evaluated from the dose-volume histogram.</p> <p>Results</p> <p>HT provided better uniformity for the planning-target volume dose coverage than both IMRT techniques. The noncoplanar IMRT technique reduces the V10 to normal liver with a statistically significant level as compared to HT. The constraints for the liver in the V30 for coplanar IMRT vs. noncoplanar IMRT vs. HT could be reconsidered as 21% vs. 17% vs. 17%, respectively. When delivering 50 Gy and 60-66 Gy to the tumor bed, the constraints of mean dose to the normal liver could be less than 20 Gy and 25 Gy, respectively.</p> <p>Conclusion</p> <p>Noncoplanar IMRT and HT are potential techniques of radiation therapy for HCC patients with PVT. Constraints for the liver in IMRT and HT could be stricter than for 3DCRT.</p

    Fermion-boson many-body interplay in a frustrated kagome paramagnet

    Full text link
    Kagome-net, appearing in areas of fundamental physics, materials, photonic and cold-atom systems, hosts frustrated fermionic and bosonic excitations. However, it is extremely rare to find a system to study both fermionic and bosonic modes to gain insights into their many-body interplay. Here we use state-of-the-art scanning tunneling microscopy and spectroscopy to discover unusual electronic coupling to flat-band phonons in a layered kagome paramagnet. Our results reveal the kagome structure with unprecedented atomic resolution and observe the striking bosonic mode interacting with dispersive kagome electrons near the Fermi surface. At this mode energy, the fermionic quasi-particle dispersion exhibits a pronounced renormalization, signaling a giant coupling to bosons. Through a combination of self-energy analysis, first-principles calculation, and a lattice vibration model, we present evidence that this mode arises from the geometrically frustrated phonon flat-band, which is the lattice analog of kagome electron flat-band. Our findings provide the first example of kagome bosonic mode (flat-band phonon) in electronic excitations and its strong interaction with fermionic degrees of freedom in kagome-net materials.Comment: To appear in Nature Communications (2020

    Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure

    Full text link
    Quantum geometry - the geometry of electron Bloch wavefunctions - is central to modern condensed matter physics. Due to the quantum nature, quantum geometry has two parts, the real part quantum metric and the imaginary part Berry curvature. The studies of Berry curvature have led to countless breakthroughs, ranging from the quantum Hall effect in 2DEGs to the anomalous Hall effect (AHE) in ferromagnets. However, in contrast to Berry curvature, the quantum metric has rarely been explored. Here, we report a new nonlinear Hall effect induced by quantum metric by interfacing even-layered MnBi2Te4 (a PT-symmetric antiferromagnet (AFM)) with black phosphorus. This novel nonlinear Hall effect switches direction upon reversing the AFM spins and exhibits distinct scaling that suggests a non-dissipative nature. Like the AHE brought Berry curvature under the spotlight, our results open the door to discovering quantum metric responses. Moreover, we demonstrate that the AFM can harvest wireless electromagnetic energy via the new nonlinear Hall effect, therefore enabling intriguing applications that bridges nonlinear electronics with AFM spintronics.Comment: 19 pages, 4 figures and a Supplementary Materials with 66 pages, 4 figures and 3 tables. Originally submitted to Science on Oct. 5, 202

    Recapitulation of Fibromatosis Nodule by Multipotential Stem Cells in Immunodeficient Mice

    Get PDF
    Musculoskeletal fibromatosis remains a disease of unknown etiology. Surgical excision is the standard of care, but the recurrence rate remains high. Superficial fibromatosis typically presents as subcutaneous nodules caused by rapid myofibroblast proliferation followed by slow involution to dense acellular fibrosis. In this study, we demonstrate that fibromatosis stem cells (FSCs) can be isolated from palmar nodules but not from cord or normal palm tissues. We found that FSCs express surface markers such as CD29, CD44, CD73, CD90, CD105, and CD166 but do not express CD34, CD45, or CD133. We also found that FSCs are capable of expanding up to 20 passages, that these cells include myofibroblasts, osteoblasts, adipocytes, chondrocytes, hepatocytes, and neural cells, and that these cells possess multipotentiality to develop into the three germ layer cells. When implanted beneath the dorsal skin of nude mice, FSCs recapitulated human fibromatosis nodules. Two weeks after implantation, the cells expressed immunodiagnostic markers for myofibroblasts such as α-smooth muscle actin and type III collagen. Two months after implantation, there were fewer myofibroblasts and type I collagen became evident. Treatment with the antifibrogenic compound Trichostatin A (TSA) inhibited the proliferation and differentiation of FSCs in vitro. Treatment with TSA before or after implantation blocked formation of fibromatosis nodules. These results suggest that FSCs are the cellular origin of fibromatosis and that these cells may provide a promising model for developing new therapeutic interventions
    corecore