4,344 research outputs found
Polycyclic Aromatic Hydrocarbons with armchair edges and the 12.7 {\mu}m band
In this Letter we report the results of density functional theory
calculations on medium-sized neutral Polycyclic Aromatic Hydrocarbon (PAH)
molecules with armchair edges. These PAH molecules possess strong C-H
stretching and bending modes around 3 {\mu}m and in the fingerprint region
(10-15 {\mu}m), and also strong ring deformation modes around 12.7 {\mu}m.
Perusal of the entries in the NASA Ames PAHs Database shows that ring
deformation modes of PAHs are common - although generally weak. We then propose
that armchair PAHs with NC >65 are responsible for the 12.7 {\mu}m Aromatic
Infrared Band in HII regions and discuss astrophysical implications in the
context of the PAH life-cycle.Comment: Minor editin
The 3.1 micrometer ice band in infrared reflection nebulae
Recent observations show that infrared reflection nebulae are common phenomena in star forming regions. Extensive observations were made of two nearby infrared reflection nebulae, Orin Molecular Cloud 2 IRS1 (OMC-2/IRS1) and Cepheus A IRS6a (Cep-A/IRS6a). Mie scattering models of ice coated grains were used to study the constraints on the properties and locations of grains that could produce a feature similar to that observed in OMC-2 and Cep-A. It was concluded that scattering by ice particles alone could not be responsible for the 3.1 micron feature observed in infrared reflection nebulae
Mapping PAH sizes in NGC 7023 with SOFIA
NGC 7023 is a well-studied reflection nebula, which shows strong emission
from polycyclic aromatic hydrocarbon (PAH) molecules in the form of aromatic
infrared bands (AIBs). The spectral variations of the AIBs in this region are
connected to the chemical evolution of the PAH molecules which, in turn,
depends on the local physical conditions. We use the capabilities of SOFIA to
observe a 3.2' x 3.4' region of NGC 7023 at wavelengths that we observe with
high spatial resolution (2.7") at 3.3 and 11.2 um. We compare the SOFIA images
with existing images of the PAH emission at 8.0 um (Spitzer), emission from
evaporating very small grains (eVSG) extracted from Spitzer-IRS spectral cubes,
the ERE (HST and CFHT), and H_2 (2.12 um). We create maps of the 11.2/3.3 um
ratio to probe the morphology of the PAH size distribution and the 8.0/11.2 um
ratio to probe the PAH ionization. We make use of an emission model and of
vibrational spectra from the NASA Ames PAHdb to translate the 11.2/3.3 um ratio
to PAH sizes. The 11.2/3.3 um map shows the smallest PAH concentrate on the PDR
surface (H_2 and extended red emission) in the NW and South PDR. We estimated
that PAHs in the NW PDR bear, on average, a number of carbon atoms (N_c) of ~70
in the PDR cavity and ~50 at the PDR surface. In the entire nebula, the results
reveal a factor of 2 variation in the size of the PAH. We relate these size
variations to several models for the evolution of the PAH families when they
traverse from the molecular cloud to the PDR. The PAH size map enables us to
follow the photochemical evolution of PAHs in NGC 7023. Small PAHs result from
the photo-evaporation of VSGs as they reach the PDR surface. Inside the PDR
cavity, the PAH abundance drops as the smallest PAH are broken down. The
average PAH size increases in the cavity where only the largest species survive
or are converted into C_60 by photochemical processing.Comment: accepted for publication in A&
Pore evolution in interstellar ice analogues: simulating the effects of temperature increase
Context. The level of porosity of interstellar ices - largely comprised of
amorphous solid water (ASW) - contains clues on the trapping capacity of other
volatile species and determines the surface accessibility that is needed for
solid state reactions to take place. Aims. Our goal is to simulate the growth
of amorphous water ice at low temperature (10 K) and to characterize the
evolution of the porosity (and the specific surface area) as a function of
temperature (from 10 to 120 K). Methods. Kinetic Monte Carlo simulations are
used to mimic the formation and the thermal evolution of pores in amorphous
water ice. We follow the accretion of gas-phase water molecules as well as
their migration on surfaces with different grid sizes, both at the top growing
layer and within the bulk. Results. We show that the porosity characteristics
change substantially in water ice as the temperature increases. The total
surface of the pores decreases strongly while the total volume decreases only
slightly for higher temperatures. This will decrease the overall reaction
efficiency, but in parallel, small pores connect and merge, allowing trapped
molecules to meet and react within the pores network, providing a pathway to
increase the reaction efficiency. We introduce pore coalescence as a new solid
state process that may boost the solid state formation of new molecules in
space and has not been considered so far.Comment: 9 pages, 8 figures Accepted for publication in A&
On the master equation approach to diffusive grain-surface chemistry: the H, O, CO system
We have used the master equation approach to study a moderately complex
network of diffusive reactions occurring on the surfaces of interstellar dust
particles. This network is meant to apply to dense clouds in which a large
portion of the gas-phase carbon has already been converted to carbon monoxide.
Hydrogen atoms, oxygen atoms, and CO molecules are allowed to accrete onto dust
particles and their chemistry is followed. The stable molecules produced are
oxygen, hydrogen, water, carbon dioxide (CO2), formaldehyde (H2CO), and
methanol (CH3OH). The surface abundances calculated via the master equation
approach are in good agreement with those obtained via a Monte Carlo method but
can differ considerably from those obtained with standard rate equations.Comment: 13 pages, 5 figure
High-Resolution 4.7 Micron Keck/NIRSPEC Spectra of Protostars. II. Detection of the ^(13)CO Isotope in Icy Grain Mantles
The high-resolution (R = 25,000) infrared M-band spectrum of the massive protostar NGC 7538 IRS 9 shows a narrow absorption feature at 4.779 μm (2092.3 cm^(-1)) that we attribute to the vibrational stretching mode of the ^(13)CO isotope in pure CO icy grain mantles. This is the first detection of ^(13)CO in icy grain mantles in the interstellar medium. The ^(13)CO band is a factor of 2.3 narrower than the apolar component of the ^(12)CO band. With this in mind, we discuss the mechanisms that broaden solid-state absorption bands. It is shown that ellipsoidally shaped pure CO grains fit the bands of both isotopes at the same time. Slightly worse but still reasonable fits are also obtained by CO embedded in N_2-rich ices and thermally processed O_2-rich ices. In addition, we report new insights into the nature and evolution of interstellar CO ices by comparing the very high resolution multicomponent solid ^(12)CO spectrum of NGC 7538 IRS 9 with that of the previously studied low-mass source L1489 IRS. The narrow absorption of apolar CO ices is present in both spectra but much stronger in NGC 7538 IRS 9. It is superposed on a smooth broad absorption feature well fitted by a combination of CO_2 and H_2O-rich laboratory CO ices. The abundances of the latter two ices, scaled to the total H_2O ice column, are the same in both sources. We thus suggest that thermal processing manifests itself as evaporation of apolar ices only and not the formation of CO_2 or polar ices. Finally, the decomposition of the ^(12)CO band is used to derive the ^(12)CO/^(13)CO abundance ratio in apolar ices. A ratio of ^(12)CO/^(13)CO = 71 ± 15 (3 σ) is deduced, in good agreement with gas-phase CO studies (~77) and the solid ^(12)CO_2/^(13)CO_2 ratio of 80 ± 11 found in the same line of sight. The implications for the chemical path along which CO_2 is formed are discussed
From planes to bowls: photodissociation of the bisanthenequinone cation
We present a combined experimental and theoretical study of the
photodissociation of the bisanthenequinone (C28H12O2) cation, Bq+. The
experiments show that, upon photolysis, the Bq+ cation does not dehydrogenate,
but instead fragments through the sequential loss of the two neutral carbonyl
groups, causing the formation of five-membered carbon cycles. Quantum chemical
calculations confirm this Bq+ -> [Bq - CO]+ -> [Bq - 2CO]+ sequence as the
energetically most favorable reaction pathway. For the first CO loss, a
transition state with a barrier of ~3.2 eV is found, substantially lower than
the lowest calculated H loss dissociation pathway (~ 4.9 eV). A similar
situation applies for the second CO loss channel (~3.8 eV vs. ~4.7 eV), but
where the first dissociation step does not strongly alter the planar PAH
geometry, the second step transforms the molecule into a bowl-shaped one
Nested shells reveal the rejuvenation of the Orion-Eridanus superbubble
The Orion-Eridanus superbubble is the prototypical superbubble due to its
proximity and evolutionary state. Here, we provide a synthesis of recent
observational data from WISE and Planck with archival data, allowing to draw a
new and more complete picture on the history and evolution of the
Orion-Eridanus region. We discuss the general morphological structures and
observational characteristics of the superbubble, and derive quantitative
properties of the gas- and dust inside Barnard's Loop. We reveal that Barnard's
Loop is a complete bubble structure which, together with the lambda Ori region
and other smaller-scale bubbles, expands within the Orion-Eridanus superbubble.
We argue that the Orion-Eridanus superbubble is larger and more complex than
previously thought, and that it can be viewed as a series of nested shells,
superimposed along the line of sight. During the lifetime of the superbubble,
HII region champagne flows and thermal evaporation of embedded clouds
continuously mass-load the superbubble interior, while winds or supernovae from
the Orion OB association rejuvenate the superbubble by sweeping up the material
from the interior cavities in an episodic fashion, possibly triggering the
formation of new stars that form shells of their own. The steady supply of
material into the superbubble cavity implies that dust processing from interior
supernova remnants is more efficient than previously thought. The cycle of
mass-loading, interior cleansing, and star formation repeats until the
molecular reservoir is depleted or the clouds have been disrupted. While the
nested shells come and go, the superbubble remains for tens of millions of
years.Comment: 20 pages, 6 figures, accepted for publication in Ap
- …
