12 research outputs found

    Polarization state of atmospheric Cerenkov events-guidance from simulation studies

    Get PDF
    We have been systematically carrying out experimental and simulation studies of the polarization properties of atmospheric ˇCerenkov events (ACE) produced by very high energy (VHE) and ultrahigh energy (UHE) γ-ray and cosmic ray proton progenitors. We present here an interim report on the work, based on some recent simulation investigations

    Observations of TeV gamma-rays from Mrk 421 during Dec. 2005 to Apr. 2006 with the TACTIC telescope

    Full text link
    The TACTIC γ\gamma-ray telescope has observed Mrk 421 on 66 clear nights from Dec. 07, 2005 to Apr. 30, 2006, totalling \sim 202 hours of on-source observations. Here, we report the detection of flaring activity from the source at \geq 1 TeV energy and the time-averaged differential γ\gamma-ray spectrum in the energy range 1-11 TeV for the data taken between Dec. 27, 2005 to Feb. 07, 2006 when the source was in a relatively higher state as compared to the rest of the observation period. Analysis of this data spell, comprising about \sim97h reveals the presence of a 12.0σ\sim 12.0 \sigma γ\gamma-ray signal with daily flux of >> 1 Crab unit on several days. A pure power law spectrum with exponent 3.11±0.11-3.11\pm0.11 as well as a power law spectrum with an exponential cutoff (Γ=2.51±0.26(\Gamma = -2.51\pm0.26 and E0=(4.7±2.1)TeV)E_0=(4.7\pm2.1) TeV) are found to provide reasonable fits to the inferred differential spectrum within statistical uncertainties. We believe that the TeV light curve presented here, for nearly 5 months of extensive coverage, as well as the spectral information at γ\gamma-ray energies of >> 5 TeV provide a useful input for other groups working in the field of γ\gamma-ray astronomy.Comment: 13pages,4figures; Accepted for publication in Astroparticle Physic

    ANN-based energy reconstruction procedure for TACTIC gamma-ray telescope and its comparison with other conventional methods

    Full text link
    The energy estimation procedures employed by different groups, for determining the energy of the primary γ\gamma-ray using a single atmospheric Cherenkov imaging telescope, include methods like polynomial fitting in SIZE and DISTANCE, general least square fitting and look-up table based interpolation. A novel energy reconstruction procedure, based on the utilization of Artificial Neural Network (ANN), has been developed for the TACTIC atmospheric Cherenkov imaging telescope. The procedure uses a 3:30:1 ANN configuration with resilient backpropagation algorithm to estimate the energy of a γ\gamma-ray like event on the basis of its image SIZE, DISTANCE and zenith angle. The new ANN-based energy reconstruction method, apart from yielding an energy resolution of \sim 26%, which is comparable to that of other single imaging telescopes, has the added advantage that it considers zenith angle dependence as well. Details of the ANN-based energy estimation procedure along with its comparative performance with other conventional energy reconstruction methods are presented in the paper and the results indicate that amongst all the methods considered in this work, ANN method yields the best results. The performance of the ANN-based energy reconstruction has also been validated by determining the energy spectrum of the Crab Nebula in the energy range 1-16 TeV, as measured by the TACTIC telescope.Comment: 23pages, 9 figures Accepted for publication in NIM
    corecore