89 research outputs found

    Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    Get PDF
    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ

    The human DEK oncogene regulates DNA damage response signaling and repair

    Get PDF
    The human DEK gene is frequently overexpressed and sometimes amplified in human cancer. Consistent with oncogenic functions, Dek knockout mice are partially resistant to chemically induced papilloma formation. Additionally, DEK knockdown in vitro sensitizes cancer cells to DNA damaging agents and induces cell death via p53-dependent and -independent mechanisms. Here we report that DEK is important for DNA double-strand break repair. DEK depletion in human cancer cell lines and xenografts was sufficient to induce a DNA damage response as assessed by detection of γH2AX and FANCD2. Phosphorylation of H2AX was accompanied by contrasting activation and suppression, respectively, of the ATM and DNA-PK pathways. Similar DNA damage responses were observed in primary Dek knockout mouse embryonic fibroblasts (MEFs), along with increased levels of DNA damage and exaggerated induction of senescence in response to genotoxic stress. Importantly, Dek knockout MEFs exhibited distinct defects in non-homologous end joining (NHEJ) when compared to their wild-type counterparts. Taken together, the data demonstrate new molecular links between DEK and DNA damage response signaling pathways, and suggest that DEK contributes to DNA repair

    Measurements of Squeeze Film Bearing Forces to Demonstrate the Effect of Fluid Inertia,"

    No full text
    ABSTRACT Squeeze film dampers are commonly applied to high speed rotating machinery, such as aircraft engines, to reduce vibration problems. The theory of hydrodynamic lubrication has been used for the design and modeling of dampers in rotor dynamic systems despite typical modified Reynolds numbers in applications between ten and fifty. Lubrication theory is strictly valid for Reynolds numbers much less than one, which means that fluid viscous forces are much greater than inertia forces. Theoretical papers which account for fluid inertia in squeeze films have predicted large discrepancies from lubrication theory, but these results have not found wide acceptance by workers in the gas turbine industry. Recently, experimental results on the behavior of rotor dynamic systems have been reported which strongly support the existence of large fluid inertia forces. In the present paper direct measurements of damper forces are presented for the first time. Reynolds numbers up to ten are obtained at eccentricity ratios 0.2 and 0.5. Lubrication theory underpredicts the measured forces by up to a factor of two (100% error). Qualitative agreement is found with predictions of earlier improved theories which include fluid inertia forces

    A Surface Layer Model for Thin Film Lubrication

    No full text

    Internal Damper Characteristics of Rotor System with Submerged ER Fluid Journal Bearing

    No full text
    Electro-Rheological (ER) fluid behavior is similar to Bingham fluid’s. Only when the shear stress magnitude of ER fluid exceeds the yield stress, Newtonian flow results. Continuous shear strain rate equation about shear stress which simulates Bingham-like fluid shows viscosity variations. Shear yield stress is controlled by electric fields. Electric fields in circumferential direction around the journal are also changeable because of gap distance. These values make changes of spring and damping coefficients of journal bearings compared to Newtonian flow case. Implicit viscosity variation effects according to shear strain rates of fluid are included in generalized Reynolds' equation for submerged journal bearing. Fluid film pressure and perturbation pressures are solved using switch function of Elord's algorithm for cavitation boundary condition. Spring and damping coefficients are obtained for several parameters that determine the characteristics of ER fluids under a certain electric field. From these values stability region for simple rotor-bearing system is computed. It is found that there are no big differences in load capacities with the selected electric field parameters at low eccentric region and higher electric field can support more load with stability at low eccentric region

    3-D Model of a Total Hip Replacement In Vivo Providing Hydrodynamic Pressure and Film Thickness for Walking and Bicycling

    No full text
    Formulation of a 3-D lubrication simulation of a total hip replacement in vivo is presented using a finite difference approach. The goal is to determine if hydrodynamic lubrication is taking place, how thick the joint fluid film is and over what percentage of two gait cycles, (walking and bicycling), the hydrodynamic lubricating action is occurring, if at all. The assumption of rigid surfaces is made, which is conservative in the sense that pure hydrodynamic lubrication is well known to predict thinner films than elastohydrodynamic lubrication (EHL) for the same loading. The simulation method includes addressing the angular velocity direction changes and accurate geometry configuration for the acetabular cup and femoral head components and provides a range of results for material combinations of CoCrMo-on-UHMWPE, CoCrMo-on-CoCrMo, and alumina-on-alumina components. Results are in the form of the joint fluid film pressure distributions, load components and film thicknesses of the joint fluid, for the gait cycles of walking and bicycling. Results show hydrodynamic action occurs in only about 10% of walking gait cycle and throughout nearly 90% of a bicycling gait. During the 10% of the walking cycle that develops hydrodynamic lubrication, the minimum fluid film thicknesses are determined to be between 0.05 μm and 1.1 μm, while the range of film thicknesses for bicycling is between 0.1 μm and 1.4 μm, and occurs over 90% of the bicycling gait. Pressure distributions for these same periods are in the range of 2 MPa to 870 MPa for walking and 1 MPa to 24 MPa for bicycling

    Inertia Effects in Thin Film Flow With a Corrugated Boundary

    No full text
    corecore