235 research outputs found

    Validation of QSAR models for legislative purposes

    Get PDF
    OECD principles of validation of Quantitative Structure – Activity Relationships (QSAR) models for legislative purposes are given and explained. Reasons of their origination and development, like system REACH, are described. A basic impulse has come from some OECD countries followed by all (almost) other countries of the world

    Human urine certified reference material CZ 6010: creatinine and toluene metabolites (hippuric acid and o-cresol) and a benzene metabolite (phenol)

    Get PDF
    A reference material for the biological monitoring of occupational exposure to toluene, benzene and phenol was prepared. O-cresol and hippuric acid (metabolites of toluene) are used for the biological monitoring of occupational exposure to toluene. Phenol, a metabolite of benzene, is used for the biological monitoring of exposure to benzene, but phenol can of course also be used as an indicator of exposure to phenol as well. The reference material (RM) used for the determination of these metabolites was prepared by freeze-drying pooled urine samples obtained from healthy persons occupationally exposed to toluene and those taking part in an inhalation experiment. Tests for homogeneity and stability were performed by determining urine concentrations of o-cresol, hippuric acid, creatinine and phenol. To investigate the stability of the RM, the urinary concentrations of o-cresol and phenol were monitored for eighteen months using GC and HPLC, while those of hippuric acid and creatinine were followed for five and six years, respectively, using HPLC. Analysis of variance showed that the concentrations did not change. The certified concentration values (and their uncertainties) of the substances in this reference material (phenol concentration c=6.46+/-0.58 mg l(-1); o-cresol concentration c=1.17+/-0.15 mg l(-1); hippuric acid concentration c=1328+/-30 mg l(-1); creatinine concentration c=0.82+/-0.10 g l(-1)) were evaluated via the interactive statistical programme IPECA

    Preliminary measurements of lumbar spine kinematics and stiffness

    Get PDF
    The purpose of the presented study was the experimental measurement of lumbar spine stiffness and its range of motion. The dependence of torsion moment of lumbar spine segment on deflection of flexion, extension and torsion was observed during experiments. Stiffness of spine segment was determined from measured data. Human lumbar spine was used for verification of the experimental technique. The sample consisted of one lumbar vertebrae composed by five vertebral bodies and four intervertebral discs. All muscles were removed, however all ligaments were preserved. Experiments were ca rried out on the test system MTS 858.2 MiniBionix, where loading by axial force and torsion moment is possible at the same time. Special Modular Bionix Spine Test Fixator, attached to the test system was used for the measurements. Loading was controlled kinematically (gradual turning) by keeping the axial force equal zero. Measurement was timedependent. The results of these experiments are going to be used as input data for creating a model of artificial lumbar spine and new type of artificial disc replacement

    Lobster eye optics for nano-satellite x-ray monitor

    Get PDF
    The Lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it would be a convenient approach for the construction of space X-ray monitors. In this paper, we compare previously reported measurements of prototype lobster eye X-ray optics called P-25 with computer simulations and discuss differences between the theoretical end experimentally obtained results. Usability of this prototype lobster eye and manufacturing technology for the nano-satellite mission is assessed. The specific scientific goals are proposed

    Effects of Age and Loading Velocity on the Delamination Strength of the Human Aorta

    Get PDF
    Delamination strength is the mechanical property which plays a key role in the pathological process referred to as Arterial Dissection. This dissection, known especially for its occurrence in the thoracic aorta, is manifested by a separation of the layers of an artery wall, and may end with total rupture and internal haemorrhaging. Although its incidence is relatively rare, from 3 to 6 cases per 100 000 per year, it is a life-threating disease with a significant lethality [1-3]. The exact conditions under which the dissection is initiated, and as a crack propagates through the arterial wall, remain an open topic in computational as well as experimental mechanics. The aim of our study is to contribute to the deepening of our knowledge of Arterial Dissection, by collecting experimental data which is suitable for the purpose of showing how the delamination strength measured in the peeling experiments depends on age and anatomical location. In addition to the effects of age and location, our study also focuses on the effect of loading rate. The experimental branch of our research is complemented by a computational modelling of the delamination interface, in which we are looking for a numerical characterization of the material parameters describing discontinuity propagation. An XFEM model of the peeling experiment is built in Abaqus, which in our approach plays the role of the regression analysis, incorporating the cohesive zone (CZ) in order to model the delaminating arterial layers. The main objective is to obtain a detailed description of a set of constitutive parameters, which would be age- and location-specific. Our present data suggest that delamination strength strongly depends on age, and furthermore, the anatomical site also seems to be a significant factor. On the other hand, the loading velocity does not cause significant changes in results

    On Chebyshev Polynomials of Matrices

    Full text link

    Can management intensity be more important than environmental factors? A case study along an extreme elevation gradient from central Italian cereal fields

    Get PDF
    This paper aims to assess the importance of environmental and management factors determining the weed species composition along a strong elevation gradient. A total of 76 cereal fields (39 low input and 37 intensively managed) were sampled along an elevation gradient in central Italy. Explanatory variables were recorded for each field to elucidate the role of large-scale spatial trends, of site-specific abiotic environmental conditions and of field management characters. Redundancy analysis was used to assess the relative importance of each environmental variable in explaining the variation in species composition. Our results indicate that variation in weed species composition is strongly determined by altitude, mean annual precipitation, mean annual temperature and also by soil characteristics. However, the level of intensification proved to be the most influential variable. There was a significant difference in species richness and composition between low-input and intensively managed fields. Intensification leads to considerable species loss at both lower and higher elevations. Low-input fields had 296 species in total, while intensively managed fields had only 196

    Thermodynamic analysis of an absorption refrigeration system used to cool down the intake air in an Internal Combustion Engine

    Full text link
    [EN] This paper deals with the thermodynamic analysis of an absorption refrigeration cycle used to cool down the temperature of the intake air in an Internal Combustion Engine using as a heat source the exhaust gas of the engine. The solution of ammonia-water has been selected due to the stability for a wide range of operating temperatures and pressures and the low freezing point. The effects of operating temperatures, pressures, concentrations of strong and weak solutions in the absorption refrigeration cycle were examined to achieve proper heat rejection to the ambient. Potential of increasing Internal Combustion Engine efficiency and reduce pollutant emissions was estimated by means of theoretical models and experimental tests. In order to provide boundary conditions for the absorption refrigeration cycle and to simulate its effect on engine performance, a OD thermodynamic model was used to reproduce the engine performance when the intake air is cooled. Furthermore, a detailed experimental work was carried out to validate the results in real engine operation. Theoretical results show how the absorption refrigeration system decreases the intake air flow temperature down to a temperature around 5 degrees C and even lower by using the bottoming waste heat energy available in the exhaust gases in a wide range of engine operating conditions. In addition, the theoretical analysis estimates the potential of the strategy for increasing the engine indicated efficiency in levels up to 4% also at the operating conditions under evaluation. Finally, this predicted benefit in engine indicated efficiency has been experimentally confirmed by direct testing. (C) 2016 Elsevier Ltd. All rights reserved.Authors want to acknowledge the "Apoyo para la investigacion y Desarrollo (PAID)" grant for doctoral studies (FPI S2 2015 1067).Novella Rosa, R.; Dolz, V.; Martín, J.; Royo-Pascual, L. (2017). Thermodynamic analysis of an absorption refrigeration system used to cool down the intake air in an Internal Combustion Engine. Applied Thermal Engineering. 111:257-270. https://doi.org/10.1016/j.applthermaleng.2016.09.084S25727011
    corecore