33 research outputs found

    AFM Calculated Parameters of Morphology Investigation of Spin Coated MZO (M = Al, Sn, Cd, Co) Layers

    Get PDF
    This paper reports on the deposition and surface properties of the pure and doped zinc oxide layers produced by spin coating route. Pure and metallic (Al, Sn, Cd, Co) doped ZnO films are characterized by mean of atomic force microscopy (AFM). Based on atomic force microscope observation, some parameters such as grain size, height, orientation of angle and histogram are determined. The AFM scanned 2D and 3D-views permit us to discover the roughness, the average height and the skewness of clusters or grains

    AFM Calculated Parameters of Morphology Investigation of Spin Coated MZO (M = Al, Sn, Cd, Co) Layers

    Get PDF
    This paper reports on the deposition and surface properties of the pure and doped zinc oxide layers produced by spin coating route. Pure and metallic (Al, Sn, Cd, Co) doped ZnO films are characterized by mean of atomic force microscopy (AFM). Based on atomic force microscope observation, some parameters such as grain size, height, orientation of angle and histogram are determined. The AFM scanned 2D and 3D-views permit us to discover the roughness, the average height and the skewness of clusters or grains

    Optical and electrical characterization of AgInS2 thin films deposited by spray pyrolysis.

    Get PDF
    Silver indium sulfide (AgInS2) thin films have been prepared by spray pyrolysis (SP) technique using silver acetate, indium acetate, and N, N-dimethylthiourea as precursor compounds. Films were deposited onto glass substrates at different substrate temperatures (Ts) and Ag:In:S ratios in the starting solutions. Optical transmission and reflection as well as electrical measurements were performed in order to study the effect of deposition parameters on the optical and electrical properties of AgInS2 thin films. X-ray diffraction measurements were used to identify the deposited compounds. It was found that different compounds such as AgInS2, Ag2S, In2O3, and In2S3 can be grown only by changing the Ag:In:S ratio in the starting solution and Ts. So that, by carefully selecting the deposition parameters, single phase AgInS2 thin films can be easily grown. Thin films obtained using a molar ratio of Ag:In:S = 1:1:2 and Ts = 400 ◦C, have an optical band gap of 1.9 eV and n-type electrical conductivity with a value of 0.3 −1 cm−1 in the dark

    H2 Sensing Response of Flame-Spray-Made Ru/SnO2 Thick Films Fabricated from Spin-Coated Nanoparticles

    Get PDF
    High specific surface area (SSABET: 141.6 m2/g) SnO2 nanoparticles doped with 0.2–3 wt% Ru were successfully produced in a single step by flame spray pyrolysis (FSP). The phase and crystallite size were analyzed by XRD. The specific surface area (SSABET) of the nanoparticles was measured by nitrogen adsorption (BET analysis). As the Ru concentration increased, the SSABET was found to linearly decrease, while the average BET-equivalent particle diameter (dBET) increased. FSP yielded small Ru particles attached to the surface of the supporting SnO2 nanoparticles, indicating a high SSABET. The morphology and accurate size of the primary particles were further investigated by TEM. The crystallite sizes of the spherical, hexagonal, and rectangular SnO2 particles were in the range of 3–10 nm. SnO2 nanorods were found to range from 3–5 nm in width and 5–20 nm in length. Sensing films were prepared by the spin coating technique. The gas sensing of H2 (500–10,000 ppm) was studied at the operating temperatures ranging from 200–350 °C in presence of dry air. After the sensing tests, the morphology and the cross-section of sensing film were analyzed by SEM and EDS analyses. The 0.2%Ru-dispersed on SnO2 sensing film showed the highest sensitivity and a very fast response time (6 s) compared to a pure SnO2 sensing film, with a highest H2 concentration of 1 vol% at 350 °C and a low H2 detection limit of 500 ppm at 200 °C

    Memoria del I Coloquio de verano de investigación de la Escuela de Negocios de ITESO, 2022

    Get PDF
    Esta memoria recoge cinco de las ponencias presentadas en el Coloquio de investigación de verano de la ENI, 2022. Son una muestra del trabajo de investigación que hacemos en el Departamento de Economía, Administración y Mercadología (DEAM), en el Centro Universidad Empresa (CUE) y en el Centro para la Gestión de la Innovación y la Tecnología (CEGINT); una investigación con una orientación principalmente práctica y aplicada, enfocada a las micro, pequeñas y medianas empresas y a su contexto socioeconómico. Esperamos que puedan ser ocasión de diálogo y de contribución no sólo al campo académico en el que nos desenvolvemos, sino también a las realidades mismas en las que queremos colaborar para apoyar los esfuerzos hacia una economía y una sociedad más justas y más humanas.ITESO, A.C

    Memoria del II Coloquio de verano de investigación de la Escuela de Negocios de ITESO, 2023

    Get PDF
    La memoria recoge cinco de las ponencias presentadas en el Coloquio de investigación de verano de la Escuela de Negocios, 2023. Durante las presentaciones y el diálogo quisimos hacer énfasis en dos aspectos de nuestra labor universitaria: 1) el fortalecimiento de la Escuela de Negocios como instancia interdepartamental que comparte una misión común; 2) el modo como las tres funciones sustantivas (docencia, investigación y vinculación) se retroalimentan y sostienen mutuamente. Se presentan resúmenes extendidos de los siguientes trabajos: Diagnóstico de cultura organizacional por alumnos del PAP de Gestión del cambio, del talento humano y la efectividad organizacional; Modelo estratégico de sostenibilidad basado en el modelo de flujos descontados (DCF); Laboratorios móviles: impulsando la industria creativa-cultural en Jalisco; Nueva estrategia de comunicación como proceso formativo para empresarios y emprendedores; Economía Social y Solidaria como un elemento para el desarrollo de talleres del sector artesanal.ITESO, A.C

    Resolver problemas sociales: hacia una metodología de nodos articuladores (Complexus 11)

    Get PDF
    Los autores nos comparten sus experiencias y búsquedas, desde sus enfoques teóricos particulares y al mismo tiempo desde un trabajo de interconexión intrauniversitaria para la producción de conocimiento, metodologías y herramientas orientadas a solucionar integralmente problemáticas sociales complejas y con escenarios cambiantes

    Propriétés électriques et optiques de couches minces de ZnO et ZnO dopé à l'indium, obtenues par le procédé Pyrosol

    No full text
    Undoped and indium-doped ZnO thin films deposited by the Pyrosol process onto soda-lime glass substrates were electrically and optically characterized. Resistivities as low as 2×1032\times 10^{-3} Ω\Omega.cm. Hall mobilities as high as 21 cm2^2 V1^{-1} s1^{-1} and effective carrier concentrations as high as 1×10201 \times 10^{20} cm3^{-3} have been obtained. Electron concentrations are always lower than indium contents on the films. Average optical transmissions on the whole visible range as high as 85% for the best conductive films have been obtained. Refractive index of layers is modified by the growth temperature and indium doping, been less dependent on doping for high deposition temperatures (better crystallinity). Haacke's figure of merit up to 5×1035\times 10^{-3} Ω1\Omega^{-1} in a 500 nm thick films were obtained. Indium doping improves the time-dependent stability of the electrical properties of ZnO conducting films.Des couches minces de ZnO conducteur non dopé et dopé à l'indium, élaborées par le procédé Pyrosol sur des substrats en verre sodocalcique, ont été caractérisées du point de vue électrique et optique. Résistivités de 2×1032\times 10^{-3} Ω\Omega.cm, mobilités Hall de 21 cm2^2 V1^{-1} s1^{-1}, et concentrations effectives des porteurs de l'ordre de 1×10201 \times 10^{20} cm3^{-3} ont été obtenues. La concentration des porteurs mesurée par effet Hall est toujours inférieure à la concentration d'indium dans la couche. La transmission optique moyenne dans le visible atteint 85 % pour les films possédant la meilleure conductivité. La température de dépôt et le dopage à l'indium modifient l'indice de réfraction ; celui-ci dépend moins du dopage à des températures de dépôt élevées (meilleure cristallinité). Les meilleurs facteurs de mérite, TC\varnothing_{\rm TC}, sont de l'ordre de 5×1035\times 10^{-3} Ω1\Omega^{-1} (épaisseur du film 5 000 Å environ). Le dopage à l'indium améliore la stabilité dans le temps des propriétés électriques des couches de ZnO
    corecore