197 research outputs found

    RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's sarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ewing's sarcomas are aggressive musculoskeletal tumors occurring most frequently in the long and flat bones as a solitary lesion mostly during the teen-age years of life. With current treatments, significant number of patients relapse and survival is poor for those with metastatic disease. As part of novel target discovery in Ewing's sarcoma, we applied RNAi mediated phenotypic profiling to identify kinase targets involved in growth and survival of Ewing's sarcoma cells.</p> <p>Results</p> <p>Four Ewing's sarcoma cell lines TC-32, TC-71, SK-ES-1 and RD-ES were tested in high throughput-RNAi screens using a siRNA library targeting 572 kinases. Knockdown of 25 siRNAs reduced the growth of all four Ewing's sarcoma cell lines in replicate screens. Of these, 16 siRNA were specific and reduced proliferation of Ewing's sarcoma cells as compared to normal fibroblasts. Secondary validation and preliminary mechanistic studies highlighted the kinases STK10 and TNK2 as having important roles in growth and survival of Ewing's sarcoma cells. Furthermore, knockdown of STK10 and TNK2 by siRNA showed increased apoptosis.</p> <p>Conclusion</p> <p>In summary, RNAi-based phenotypic profiling proved to be a powerful gene target discovery strategy, leading to successful identification and validation of STK10 and TNK2 as two novel potential therapeutic targets for Ewing's sarcoma.</p

    RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest.</p> <p>Results</p> <p>In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape.</p> <p>Conclusion</p> <p>The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis.</p

    Posterior Association Networks and Functional Modules Inferred from Rich Phenotypes of Gene Perturbations

    Get PDF
    Combinatorial gene perturbations provide rich information for a systematic exploration of genetic interactions. Despite successful applications to bacteria and yeast, the scalability of this approach remains a major challenge for higher organisms such as humans. Here, we report a novel experimental and computational framework to efficiently address this challenge by limiting the ‘search space’ for important genetic interactions. We propose to integrate rich phenotypes of multiple single gene perturbations to robustly predict functional modules, which can subsequently be subjected to further experimental investigations such as combinatorial gene silencing. We present posterior association networks (PANs) to predict functional interactions between genes estimated using a Bayesian mixture modelling approach. The major advantage of this approach over conventional hypothesis tests is that prior knowledge can be incorporated to enhance predictive power. We demonstrate in a simulation study and on biological data, that integrating complementary information greatly improves prediction accuracy. To search for significant modules, we perform hierarchical clustering with multiscale bootstrap resampling. We demonstrate the power of the proposed methodologies in applications to Ewing's sarcoma and human adult stem cells using publicly available and custom generated data, respectively. In the former application, we identify a gene module including many confirmed and highly promising therapeutic targets. Genes in the module are also significantly overrepresented in signalling pathways that are known to be critical for proliferation of Ewing's sarcoma cells. In the latter application, we predict a functional network of chromatin factors controlling epidermal stem cell fate. Further examinations using ChIP-seq, ChIP-qPCR and RT-qPCR reveal that the basis of their genetic interactions may arise from transcriptional cross regulation. A Bioconductor package implementing PAN is freely available online at http://bioconductor.org/packages/release/bioc/html/PANR.html

    Deterministic Effects Propagation Networks for reconstructing protein signaling networks from multiple interventions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modern gene perturbation techniques, like RNA interference (RNAi), enable us to study effects of targeted interventions in cells efficiently. In combination with mRNA or protein expression data this allows to gain insights into the behavior of complex biological systems.</p> <p>Results</p> <p>In this paper, we propose Deterministic Effects Propagation Networks (DEPNs) as a special Bayesian Network approach to reverse engineer signaling networks from a combination of protein expression and perturbation data. DEPNs allow to reconstruct protein networks based on combinatorial intervention effects, which are monitored via changes of the protein expression or activation over one or a few time points. Our implementation of DEPNs allows for latent network nodes (i.e. proteins without measurements) and has a built in mechanism to impute missing data. The robustness of our approach was tested on simulated data. We applied DEPNs to reconstruct the <it>ERBB </it>signaling network in <it>de novo </it>trastuzumab resistant human breast cancer cells, where protein expression was monitored on Reverse Phase Protein Arrays (RPPAs) after knockdown of network proteins using RNAi.</p> <p>Conclusion</p> <p>DEPNs offer a robust, efficient and simple approach to infer protein signaling networks from multiple interventions. The method as well as the data have been made part of the latest version of the R package "nem" available as a supplement to this paper and via the Bioconductor repository.</p

    Abortive Autophagy Induces Endoplasmic Reticulum Stress and Cell Death in Cancer Cells

    Get PDF
    Autophagic cell death or abortive autophagy has been proposed to eliminate damaged as well as cancer cells, but there remains a critical gap in our knowledge in how this process is regulated. The goal of this study was to identify modulators of the autophagic cell death pathway and elucidate their effects on cellular signaling and function. The result of our siRNA library screenings show that an intact coatomer complex I (COPI) is obligatory for productive autophagy. Depletion of COPI complex members decreased cell survival and impaired productive autophagy which preceded endoplasmic reticulum stress. Further, abortive autophagy provoked by COPI depletion significantly altered growth factor signaling in multiple cancer cell lines. Finally, we show that COPI complex members are overexpressed in an array of cancer cell lines and several types of cancer tissues as compared to normal cell lines or tissues. In cancer tissues, overexpression of COPI members is associated with poor prognosis. Our results demonstrate that the coatomer complex is essential for productive autophagy and cellular survival, and thus inhibition of COPI members may promote cell death of cancer cells when apoptosis is compromised

    Randomized multicenter phase II study of flavopiridol (alvocidib), cytarabine, and mitoxantrone (FLAM) versus cytarabine/daunorubicin (7+3) in newly diagnosed acute myeloid leukemia

    Get PDF
    Serial studies have demonstrated that induction therapy with FLAM [flavopiridol (alvocidib) 50 mg/m2 days 1–3, cytarabine 667 mg/m2/day continuous infusion days 6–8, and mitoxantrone (FLAM) 40 mg/m2 day 9] yields complete remission rates of nearly 70% in newly diagnosed poor-risk acute myeloid leukemia. Between May 2011–July 2013, 165 newly diagnosed acute myeloid leukemia patients (age 18–70 years) with intermediate/adverse-risk cytogenetics were randomized 2:1 to receive FLAM or 7+3 (cytarabine 100 mg/m2/day continuous infusion days 1–7 and daunorubicin 90 mg/m2 days 1–3), across 10 institutions. Some patients on 7+3 with residual leukemia on day 14 received 5+2 (cytarabine 100 mg/m2/day continuous infusion days 1–5 and daunorubicin 45 mg/m2 days 1–2), whereas patients on FLAM were not re-treated based on day 14 bone marrow findings. The primary objective was to compare complete remission rates between one cycle of FLAM and one cycle of 7+3. Secondary end points included safety, overall survival and event-free survival. FLAM led to higher complete remission rates than 7+3 alone (70% vs. 46%; P=0.003) without an increase in toxicity, and this improvement persisted after 7+3+/−5+2 (70% vs. 57%; P=0.08). There were no significant differences in overall survival and event-free survival in both arms but post-induction strategies were not standardized. These results substantiate the efficacy of FLAM induction in newly diagnosed AML. A phase III study is currently in development. This study is registered with clinicaltrials.gov identifier: 01349972
    • …
    corecore