28 research outputs found

    A New Type of Quartz Smog Chamber : Design and Characterization

    Get PDF
    Publisher Copyright: ©Since the 1960s, many indoor and outdoor smog chambers have been developed worldwide. However, most of them are made of Teflon films, which have relatively high background contaminations due to the wall effect. We developed the world's first medium-size quartz chamber (10 m(3)), which is jointed with 32 pieces of 5 mm thick polished quartz glasses and a stainless-steel frame. Characterizations show that this chamber exhibits excellent performance in terms of relative humidity (RH) (2-80%) and temperature (15-30 +/- 1 degrees C) control, mixing efficiency of the reactants (6-8 min), light transmittance (>90% above 290 nm), and wall loss of pollutants. The wall loss rates of the gas-phase pollutants are on the order of 10(-4) min(-1) at 298 K under dry conditions. It is 0.08 h(-1) for 100-500 nm particles, significantly lower than those of Teflon chambers. The photolysis rate of NO2 (J(NO2)) is automatically adjustable to simulate the diurnal variation of solar irradiation from 0 to 0.40 min(-1). The inner surface of the chamber can be repeatedly washed with deionized water, resulting in low background contaminations. Both experiments (toluene-NOx and alpha-pinene-ozone systems) and box model demonstrate that this new quartz chamber can provide high-quality data for investigating SOA and O-3 formation in the atmosphere.Peer reviewe

    Targeting histone deacetylase 3 (HDAC3) in the bone marrow microenvironment inhibits multiple myeloma proliferation by modulating exosomes and IL-6 trans-signaling

    Get PDF
    Multiple myeloma (MM) is an incurable cancer that derives pro-survival/proliferative signals from the bone marrow (BM) niche. Novel agents targeting not only cancer cells, but also the BM-niche have shown the greatest activity in MM. Histone deacetylases (HDACs) are therapeutic targets in MM and we previously showed that HDAC3 inhibition decreases MM proliferation both alone and in co-culture with bone marrow stromal cells (BMSC). In this study, we investigate the effects of HDAC3 targeting in BMSCs. Using both BMSC lines as well as patient-derived BMSCs, we show that HDAC3 expression in BMSCs can be induced by co-culture with MM cells. Knock-out (KO), knock-down (KD), and pharmacologic inhibition of HDAC3 in BMSCs results in decreased MM cell proliferation; including in autologous cultures of patient MM cells with BMSCs. We identified both quantitative and qualitative changes in exosomes and exosomal miRNA, as well as inhibition of IL-6 trans-signaling, as molecular mechanisms mediating anti-MM activity. Furthermore, we show that HDAC3-KD in BM endothelial cells decreases neoangiogenesis, consistent with a broad effect of HDAC3 targeting in the BM-niche. Our results therefore support the clinical development of HDAC3 inhibitors based not only on their direct anti-MM effects, but also their modulation of the BM microenvironment

    The Effect of the Swimmer’s Trunk Oscillation on Dolphin Kick Performance Using a Computational Method with Multi-Body Motion: A Case Study

    No full text
    The effect of a specific Chinese swimmer’s trunk oscillation on dolphin kick was investigated in order to optimize competitive swimming movement. Using a numerical simulation method based on multi-body motion, different swimmer’s trunk oscillation during a dolphin kick was analyzed. The simulation was conducted using 3D incompressible Navier–Stokes equations and renormalization group k-ε turbulence model, combined with the Volume of Fluid method to capture the water surface. The simulation’s results were evaluated by comparing them with experimental data and with previous studies. The net streamwise forces, mean swimming velocity, and joint moments were also investigated. There was a positive correlation between the mean swimming velocity and the amplitudes of the swimmer’s trunk oscillation, where the Pearson correlation coefficient was 0.986 and the selected model was statistically significant (p < 0.05). In addition, as the mean swimming velocity increased from 1.42 m/s in Variant 1 to 2 m/s in Variant 5, the maximum positive moments of joints increased by about 24.7% for the ankles, 27.4% for the knees, −3.9% for the hips, and 5.8% for the upper waist, whereas the maximum negative moments of joints increased by about 64.5% for the ankles, 28.1% for the knees, 23.1% for the hips, and 10.1% for the upper waist. The relationship between the trunk oscillation and the vortices was also investigated. Therefore, it is recommended that swimmers should try to increase the amplitudes of trunk oscillation to increase their swimming velocity. In order to achieve this goal, swimmers should increase strength training for the ankles, knees, and upper waist during the upkick. Moreover, extra strength training is warranted for the ankles, knees, hips, and upper waist during the downkick

    Review of fractional epidemic models

    No full text
    The global impact of corona virus (COVID-19) has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 influenza A(H1N1) pandemic. In this paper, we have focused on reviewing the results of epidemiological modelling especially the fractional epidemic model and summarized different types of fractional epidemic models including fractional Susceptible-Infective-Recovered (SIR), Susceptible-Exposed-Infective-Recovered (SEIR), Susceptible-Exposed-Infective-Asymptomatic-Recovered (SEIAR) models and so on. Furthermore, we propose a general fractional SEIAR model in the case of single-term and multi-term fractional differential equations. A feasible and reliable parameter estimation method based on modified hybrid Nelder-Mead simplex search and particle swarm optimisation is also presented to fit the real data using fractional SEIAR model. The effective methods to solve the fractional epidemic models we introduced construct a simple and effective analytical technique that can be easily extended and applied to other fractional models, and can help guide the concerned bodies in preventing or controlling, even predicting the infectious disease outbreaks.</p

    Hydrodynamic Characteristics of Different Undulatory Underwater Swimming Positions Based on Multi-Body Motion Numerical Simulation Method

    No full text
    The study of hydrodynamic characteristics of swimming is the main way to optimize the swimming movement. The relationship between position, water depth, and swimming performance of undulatory underwater swimming are one of the main concerns of scholars. Therefore, the aim of this study is to analyze the swimming performance of three different undulatory underwater swimming positions under various swimming depths using a numerical simulation method based on multi-body motion. The simulation was conducted using 3D incompressible Navier&ndash;Stokes equations using the RNG k-&epsilon; turbulence closure equations, and in combination with the VOF method thus that we could include the water surface in our calculations. Different swimming depths based on the distance from the shoulder joint center to the initial water surface were considered. The velocity of the shoulder joint center was captured with a swimming motion monitoring system (KiSwim) and compared with the calculated results. The study found that there was a significant difference in the hydrodynamic characteristics of the three undulatory underwater swimming positions (i.e., the dorsal, lateral, and frontal positions) when swimming near the water surface, and the difference decreased as the swimming depth increased. There was a negative correlation (R(dorsal) = &minus;0.928, R(frontal) = &minus;0.937, R(lateral) = &minus;0.930) between the swimming velocities of the three undulatory underwater swimming positions and the water depth (water depth = 0.2&ndash;0.7 m) and that the lateral position had the greatest average velocity. Therefore, it is recommended that swimmers travel at least 0.5 m below the water surface in any undulatory underwater swimming position in order to avoid excessive drag forces. As the swimmer approaches the water surface, the lateral position is worth considering, which has better velocity and hydrodynamic advantage than the other two undulatory underwater swimming positions

    Oxidative Dephosphorylation of Benzylic Phosphonates with Dioxygen Generating Symmetrical <i>trans</i>-Stilbenes

    No full text
    Under a dioxygen atmosphere, benzylphosphonates and related phosphoryl compounds can readily produce the corresponding <i>trans</i>-stilbenes in high yields with high selectivity upon treatment with bases. Various functional groups were tolerable under the reaction conditions

    Improving Social Acceptance of Waste-to-Energy Incinerators in China: Role of Place Attachment, Trust, and Fairness

    No full text
    Globally, acceptance among the general public of waste-to-energy (WtE) incinerators is a crucial factor in implementing national waste-to-energy policies. This study aims to shed light on the acceptance of WtE incinerators, with a focus on anti-incinerator sentiment and the influence and interactions of place-, trust-, and fairness-based factors, with a case study in China. A total of 338 residents in the Asuwei area in North Beijing completed a survey on a proposed WtE incinerator in the vicinity. Hierarchical regression analyses indicate that place attachment positively enhances anti-incinerator sentiment through direct effects, as well as moderation and mediation effects between risk perception and opposing willingness. Furthermore, institutional trust negatively moderates the impact of perceived risk on anti-incinerator sentiment, in addition to directly reducing perceived risk. Trust also influences anti-incinerator sentiment via risk perception, attesting to the effectiveness of a casual model of trust. Likewise, fairness perception acts as another determinant of opposing sentiment, similarly to trust. These findings demonstrate the importance of using a range of instrumental and more effective strategies to promote the acceptance of renewable energy infrastructure

    A Novel Electrochemiluminescence Immunosensor Based on Resonance Energy Transfer between g-CN and NU-1000(Zr) for Ultrasensitive Detection of Ochratoxin A in Coffee

    No full text
    In this study, an electrochemiluminescence (ECL) immunosensor based on nanobody heptamer and resonance energy transfer (RET) between g-C3N4 (g-CN) and NU-1000(Zr) was proposed for ultrasensitive ochratoxin A (OTA) detection. First, OTA heptamer fusion protein was prepared by fusing OTA-specific nanometric (Nb28) with a c-terminal fragment of C4 binding protein (C4bpα) (Nb28-C4bpα). Then, Nb28-C4bpα heptamer with the high affinity used as a molecular recognition probe, of which plenty of binding sites were provided for OTA-Apt-NU-1000(Zr) nanocomposites, thereby improving the immunosensors’ sensitivity. In addition, the quantitative analysis of OTA can be achieved by using the signal quenching effect of NU-1000(Zr) on g-CN. As the concentration of OTA increases, the amount of OTA-Apt-NU-1000(Zr) fixed on the electrode surface decreases. RET between g-CN and NU-1000(Zr) is weakened leading to the increase of ECL signal. Thus, OTA content is indirectly proportional to ECL intensity. Based on the above principle, an ultra-sensitive and specific ECL immunosensor for OTA detection was constructed by using heptamer technology and RET between two nanomaterials, with a range from 0.1 pg/mL to 500 ng/mL, and the detection limit of only 33 fg/mL. The prepared ECL-RET immunosensor showed good performance and can be successfully used for the determination of OTA content in real coffee samples, suggesting that the nanobody polymerization strategy and the RET effect between NU-1000(Zr) and g-CN can provide an alternative for improving the sensitivity of important mycotoxin detection
    corecore