5 research outputs found

    Aerosol Brown Carbon from Dark Reactions of Syringol in Aqueous Aerosol Mimics

    No full text
    We performed a laboratory investigation of the chemical processing of syringol, a representative model phenolic compound emitted from wood burning, in concentrated aqueous salt solutions mimicking tropospheric aerosol particles. For solutions containing chloride salts, we observed the formation of light-absorbing organic products (“brown carbon”), accompanied by a phase separation, within 10 h under dark conditions. Products were characterized at the molecular level using ultraperformance liquid chromatography interfaced to diode array detection and high-resolution quadrupole time-of-flight mass spectrometry equipped with electrospray ionization and matrix-assisted laser desorption/ionization interfaced to high-resolution time-of-flight mass spectrometry. The ultraviolet–visible spectra, together with high-resolution mass spectra results, suggest that syringol can be oxidized by dissolved oxygen, and the presence of Cl<sup>–</sup> promotes this reaction. Our results provide new insights into the evolution of aerosol optical properties during aging, specifically the formation of aerosol brown carbon in biomass-burning plumes

    Evidence for an Unrecognized Secondary Anthropogenic Source of Organosulfates and Sulfonates: Gas-Phase Oxidation of Polycyclic Aromatic Hydrocarbons in the Presence of Sulfate Aerosol

    No full text
    In the present study, formation of aromatic organosulfates (OSs) from the photo-oxidation of polycyclic aromatic hydrocarbons (PAHs) was investigated. Naphthalene (NAP) and 2-methylnaphthalene (2-MeNAP), two of the most abundant gas-phase PAHs and thought to represent “missing” sources of urban SOA, were photochemically oxidized in an outdoor smog chamber facility in the presence of nonacidified and acidified sulfate seed aerosol. Effects of seed aerosol composition, acidity and relative humidity on OS formation were examined. Chemical characterization of SOA extracts by ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry revealed the formation of OSs and sulfonates from photo-oxidation in the presence of sulfate seed aerosol. Many of the organosulfur compounds identified in the smog chamber extracts were also measured in urban fine aerosol collected at Lahore, Pakistan, and Pasadena, USA, demonstrating that PAH photo-oxidation in the presence of sulfate aerosol is a hitherto unrecognized source of anthropogenic secondary organosulfur compounds, and providing new PAH SOA tracers

    Gene Expression Profiling in Human Lung Cells Exposed to Isoprene-Derived Secondary Organic Aerosol

    Get PDF
    Secondary organic aerosol (SOA) derived from the photochemical oxidation of isoprene contributes a substantial mass fraction to atmospheric fine particulate matter (PM<sub>2.5</sub>). The formation of isoprene SOA is influenced largely by anthropogenic emissions through multiphase chemistry of its multigenerational oxidation products. Considering the abundance of isoprene SOA in the troposphere, understanding mechanisms of adverse health effects through inhalation exposure is critical to mitigating its potential impact on public health. In this study, we assessed the effects of isoprene SOA on gene expression in human airway epithelial cells (BEAS-2B) through an air–liquid interface exposure. Gene expression profiling of 84 oxidative stress and 249 inflammation-associated human genes was performed. Our results show that the expression levels of 29 genes were significantly altered upon isoprene SOA exposure under noncytotoxic conditions (<i>p</i> < 0.05), with the majority (22/29) of genes passing a false discovery rate threshold of 0.3. The most significantly affected genes belong to the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) transcription factor network. The Nrf2 function is confirmed through a reporter cell line. Together with detailed characterization of SOA constituents, this study reveals the impact of isoprene SOA exposure on lung responses and highlights the importance of further understanding its potential health outcomes

    Secondary Organic Aerosol Formation via 2‑Methyl-3-buten-2-ol Photooxidation: Evidence of Acid-Catalyzed Reactive Uptake of Epoxides

    Get PDF
    Secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) photooxidation has recently been observed in both field and laboratory studies. Similar to the level of isoprene, the level of MBO-derived SOA increases with elevated aerosol acidity in the absence of nitric oxide; therefore, an epoxide intermediate, (3,3-dimethyloxiran-2-yl)­methanol (MBO epoxide), was synthesized and tentatively proposed to explain this enhancement. In this study, the potential of the synthetic MBO epoxide to form SOA via reactive uptake was systematically examined. SOA was observed only in the presence of acidic aerosol. Major SOA constituents, 2,3-dihydroxyisopentanol and MBO-derived organosulfate isomers, were chemically characterized in both laboratory-generated SOA and in ambient fine aerosol collected from the BEACHON-RoMBAS field campaign during the summer of 2011, where MBO emissions are substantial. Our results support the idea that epoxides are potential products of MBO photooxidation leading to the formation of atmospheric SOA and suggest that reactive uptake of epoxides may explain acid enhancement of SOA observed from other biogenic hydrocarbons

    Nitrogen-Containing, Light-Absorbing Oligomers Produced in Aerosol Particles Exposed to Methylglyoxal, Photolysis, and Cloud Cycling

    No full text
    Aqueous methylglyoxal chemistry has often been implicated as an important source of oligomers in atmospheric aerosol. Here we report on chemical analysis of brown carbon aerosol particles collected from cloud cycling/photolysis chamber experiments, where gaseous methylglyoxal and methylamine interacted with glycine, ammonium, or methylammonium sulfate seed particles. Eighteen N-containing oligomers were identified in the particulate phase by liquid chromatography/diode array detection/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry. Chemical formulas were determined and, for 6 major oligomer products, MS<sup>2</sup> fragmentation spectra were used to propose tentative structures and mechanisms. Electronic absorption spectra were calculated for six tentative product structures by an ab initio second order algebraic-diagrammatic-construction/density functional theory approach. For five structures, matching calculated and measured absorption spectra suggest that they are dominant light-absorbing species at their chromatographic retention times. Detected oligomers incorporated methylglyoxal and amines, as expected, but also pyruvic acid, hydroxyacetone, and significant quantities of acetaldehyde. The finding that ∼80% (by mass) of detected oligomers contained acetaldehyde, a methylglyoxal photolysis product, suggests that daytime methylglyoxal oligomer formation is dominated by radical addition mechanisms involving CH<sub>3</sub>CO*. These mechanisms are evidently responsible for enhanced browning observed during photolytic cloud events
    corecore