35 research outputs found

    SMOS Sea Ice Thickness Data Product Quality Control by Comparison with the Regional Sea Ice Extent

    Get PDF
    Brightness temperature data from wave Imaging Radiometer using Aperture Synthesis (MIRAS) on board the European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission have been used to derive the thickness of thin sea ice for the Arctic freeze-up period. To control the long-term geophysical quality for level 3 SMOS sea ice thickness products we derive a regional extent parameter that can be compared to independent standard ice extent products such as the NSIDC sea ice index. This metric allows to identify first-order quality problems such as data gaps and to observe the evolution of the Arctic sea ice growth in key regions. The regionalized SMOS sea ice thickness extent corresponds in general well with the corresponding NSIDC Sea Ice Index. The occurrence of severe RFI problems has so far mainly been limited to the initial period of the SMOS measurements during the season 2010/2011. Otherwise the comparison does not reveal any significant quality problems of the SMOS sea ice thickness data

    Experimental and theoretical study of S(IV)/S(VI) ratio in rain and cloud events

    Get PDF
    Production of atmospheric sulfate from SO2 emitted into the troposphere is the key question we have to answer for assessing main problems like acid rain, forest decline and negative climate forcing which is believed to counteract the green house effect. About one decade ago many researchers agreed that sulfate formation occurs dominantly (80-90 %) via the aqueous phase chemical transformation, where the SO2 dissociation is the first step. However, there is still a high uncertainty on the amount of sulfite (dissolved SO2) being oxidized and on that removed by wet deposition in the reduced form S(IV) (sulfite). This important question, whose answer gives climate modellers an essential input on the percentage of emitted SO2 converted into sulfate, was the aim of this work. This work presents experimental and theoretical results from studies of the ratio sulfite/sulfate in rainwater and cloudwater to assess the contribution of S(IV) to the total sulfur amount in the aqueous phase. The wet deposition of S(IV) in rainwater was studied by collecting rainwater samples from two different levels using a 324 m high tower. The increase of S(IV) wet deposition flux from the 324 m level to the ground level via sub-cloud scavenging of SO2 is significant. 13-51 % (36 % in average) of sulfur in rainwater on the ground level was found to be in the form of S(IV). The result that S(IV) is an important form of sulfur in rainwater was further confirmed by our theoretical study using a one-dimensional time-dependant physical-chemical cloud model. Model calculations show that most of sub-cloud scavenged SO2 will remain as free S(IV) in rainwater. In highly polluted areas the ratio can be as high as 0.9. This ratio in cloudwater is much less than that in rainwater according to our field experiment carried out at Mt. Brocken. Neverthless, under some special conditions, this ratio can be as high as 0.2, which means that the role of S(IV) in cloudwater is not ignorable. Thus, this study has confirmed the very few S(IV) measurements found in literature, suggesting the importance of S(IV) wet deposition. Our findings suggest that considerable part of emitted SO2 will not be transformed to sulfate especially in the sub-cloud layer. Therefore, the production of climate affecting sulfate aerosol via aqueous phase transformation of dissolved SO2 is more limited than believed by climate modellers.Die Bildung von Sulfat aus emittiertem SO2 in der Troposphäre ist eine Schlüsselfrage zur Einschätzung wichtiger Umweltfragen wie saurer Regen, Waldsterben und negativer Klimaantrieb, von dem in der Forschung angenommen wird, daß er den Treibhauseffekt abmildern kann. Seit ungefähr einem Jahrzehnt sind viele Wissenschaftler einig darüber, daß Sulfatbildung haupsächlich in der atmosphärischen Flüssigphase abläuft (80-90 %), wobei die Dissoziation von SO2 der erste Reaktionsschritt ist. Aber es herrscht noch sehr große Unsicherheit über das quantitative Verhältnis von oxidiertem zu flüssig deponiertem Sulfit. Ziel dieser Arbeit ist es, diese wichtige Frage zu beantworten und damit die Konversionsrate von Sulfit zu Sulfat als wichtige Eingangsdaten für Klimamodelle bereitstellen zu können. Diese Arbeit präsentiert experimentelle und theoretische Ergebnisse unserer Untersuchungen des Verhältnisses von Sulfit zu Sulfat im Regen- und Wolkenwasser zur Abschätzung des S(IV)-Beitrages zur gesamten Schwefelmenge in der Flüssigphase. Die nasse Deposition von S(IV) im Regenwasser ist im Rahmen einer Meßkampagne in Berlin-Frohnau untersucht worden. Niederschlagswasser ist gleichzeitig in 324 m Höhe und am Boden gesammelt und auf S(IV) neben vielen anderen Komponenten analysiert worden. Die Zunahme des Flusses von naß deponiertem S(IV) durch „sub-cloud scavenging“ (Auswaschprozeß unterhalb der Wolkenbasis) ist signifikant. 13-51 % (36 % als Mittelwert) des Schwefels im Regenwasser am Boden werden als S(IV) gefunden. Dieses experimentelle Ergebnis, daß S(IV) somit eine wichtige Form des Schwefels im Regenwasser ist, wird durch unsere theoretischen Untersuchungen mit einem ein-dimensionalen zeit-abhängigen physikochemischen Wolkenmodell bestätigt. Modellrechnungen zeigen, daß der überwiegende Teil des durch „sub-cloud scavenging“ abgelagerten SO2 als freies S(IV) im Regenwasser gefunden wird. In stark verschmutzen Gebieten kann dieses Verhältnis bis zu 90 % erreichen. Unsere Meßkampagne der Station auf dem Brocken (Harz) zeigt, daß dieses Verhältnis im Wolkenwasser viel kleiner ist als im Regenwasser. Trotzdem kann es unter bestimmten Bedingungen Werte bis 0.2 erreichen. Das bedeutet, daß S(IV) auch im Wolkenwasser eine nicht zu vernachlässigende Rolle spielt. Unsere Resultate unterstützen die wenige veröffentlichte Meßdaten von S(IV) in der Literatur, die die Wichtigkeit der nassen Deposition von Sulfit nahelegen. Unsere Ergebnisse zeigen, daß ein erheblicher Teil von emittiertem SO2 nicht zu Sulfat umgewandelt wird, insbesondere in der Schicht unterhalb der Wolkenbasis. Damit ist die Bildung von klimaeffektiven Sulfataerosolen aus gelöstem SO2 in der Flüssigphase stärker limitiert als bislang von Klimamodelliern postuliert wird

    SMOS sea ice thickness - a review and way forward

    Get PDF
    The sea ice on the oceans in the Arctic and Antarctic is a relatively thin blanket that significantly influences the exchange between the ocean and the atmosphere. The sea ice thickness is a major parameter, which is of great importance for diagnosis and prediction. Determining seasonal and interannual variations in sea ice thickness was the primary objective of ESA's CryoSat Earth Explorer mission. ESA's second Earth Explorer mission, SMOS, provides L-band brightness temperature data that can also be used to infer the thickness of the sea ice, although that was not its primary objective. Both missions complement each other strongly in terms of spatiotemporal sampling and their sensitivity to different ice thickness regimes. In order to further improve the synergistic use of low-frequency radiometric data for sea ice applications, it is imperative to better characterize the uncertainties and covariances associated with the retrieval. A key factor is a thorough understanding of the physical processes that determine the emissivity of sea ice in order to improve the forward model used for retrieval. A thermodynamic model is used to estimate the vertical temperature profile through the snow and sea ice. Therefore, additional meteorological data such as from atmospheric reanalyses and parameterizations of snow and sea ice properties must be taken into account. Natural sea ice is not a homogeneous medium of uniform sea ice and snow thickness, but can only be described by statistical distribution functions on different spatial scales. Thin ice and open water in leads within the compact pack ice also have a significant influence on the brightness temperature measured by SMOS. In order to take all these effects into account, the forward model or the observation operator must be of the appropriate complexity. The inversion to determine the geophysical sea ice parameters can be optimized with a-priori information and parameterizations as well as with information from other satellite sensors. The presentation will focus on a review of the current retrieval method used to generate the AWI-ESA level 3 and level 4 Sea Ice Thickness products and the way forward to improve the emissivity model and to define a common basis metrics validation to assess algorithms evolution considering that in-situ validation data is only sparsely available

    Changes in summer sea ice, albedo, and portioning of surface solar radiation in the Pacific sector of Arctic Ocean during 1982-2009

    Get PDF
    SSM/I sea ice concentration and CLARA black-sky composite albedo were used to estimate sea ice albedo in the region 70 degrees N-82 degrees N, 130 degrees W-180 degrees W. The long-term trends and seasonal evolutions of ice concentration, composite albedo, and ice albedo were then obtained. In July-August 1982-2009, the linear trend of the composite albedo and the ice albedo was -0.069 and -0.046 units per decade, respectively. During 1 June to 19 August, melting of sea ice resulted in an increase of solar heat input to the ice-ocean system by 282 MJ.m(-2) from 1982 to 2009. However, because of the counter-balancing effects of the loss of sea ice area and the enhanced ice surface melting, the trend of solar heat input to the ice was insignificant. The summer evolution of ice albedo matched the ice surface melting and ponding well at basin scale. The ice albedo showed a large difference between the multiyear and first-year ice because the latter melted completely by the end of a melt season. At the SHEBA geolocations, a distinct change in the ice albedo has occurred since 2007, because most of the multiyear ice has been replaced by first-year ice. A positive polarity in the Arctic Dipole Anomaly could be partly responsible for the rapid loss of summer ice within the study region in the recent years by bringing warmer air masses from the south and advecting more ice toward the north. Both these effects would enhance ice-albedo feedback.Peer reviewe

    A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data

    Get PDF
    Sea-ice thickness on a global scale is derived from different satellite sensors using independent retrieval methods. Due to the sensor and orbit characteristics, such satellite retrievals differ in spatial and temporal resolution as well as in the sensitivity to certain sea-ice types and thickness ranges. Satellite altimeters, such as CryoSat-2 (CS2), sense the height of the ice surface above the sea level, which can be converted into sea-ice thickness. Relative uncertainties associated with this method are large over thin ice regimes. Another retrieval method is based on the evaluation of surface brightness temperature (TB) in L-band microwave frequencies (1.4 GHz) with a thickness-dependent emission model, as measured by the Soil Moisture and Ocean Salinity (SMOS) satellite. While the radiometer-based method looses sensitivity for thick sea ice (> 1 m), relative uncertainties over thin ice are significantly smaller than for the altimetry-based retrievals. In addition, the SMOS product provides global sea-ice coverage on a daily basis unlike the altimeter data. This study presents the first merged product of complementary weekly Arctic sea-ice thickness data records from the CS2 altimeter and SMOS radiometer. We use two merging approaches: a weighted mean (WM) and an optimal interpolation (OI) scheme. While the weighted mean leaves gaps between CS2 orbits, OI is used to produce weekly Arctic-wide sea-ice thickness fields. The benefit of the data merging is shown by a comparison with airborne electromagnetic (AEM) induction sounding measurements. When compared to airborne thickness data in the Barents Sea, the merged product has a root mean square deviation (RMSD) of about 0.7 m less than the CS2 product and therefore demonstrates the capability to enhance the CS2 product in thin ice regimes. However, in mixed first-year (FYI) and multiyear (MYI) ice regimes as in the Beaufort Sea, the CS2 retrieval shows the lowest bias

    Arctic Sea Ice Volume and Mass from Data Fusion of CryoSat-2 and SMOS

    Get PDF
    The quantification of the sea ice mass balance as the marine part of the cryosphere by satellite observations depend on sea ice thickness data records for the entire ice-covered oceans. The challenges to this task are numerous. Sea ice itself is a highly dynamic medium with a significant variability at meter scale and a strong seasonal cycle which significantly impacts it remote sensing signature. Satellite sensors must therefore provide precise observations at high spatial resolution to observe the full spread of the sea ice thickness distribution and its governing processes such as the dynamic deformation. Average thickness values for larger areas are sufficient for mass balance estimates, however, available methods such as satellite altimetry and passive microwave remote sensing rely on indirect methods and auxiliary information and are often not able to provide information with an acceptable uncertainty for certain or thickness categories or during the presence of surface melt. In addition, suitable satellite sensors in orbits that enabling sea ice thickness retrieval in the inner Arctic Ocean have been in service only until recently in comparison to satellites capable of observing sea ice area. Thus, the assessment of the sea ice mass balance for longer time series is often based on reanalysis models and not Earth Observation data. The sea ice community also traditionally expresses the total sea ice budget volume and not mass. We will therefore present an available sea ice volume data record that is derived by data fusion of CryoSat-2 radar altimeter and SMOS L-Band passive microwave-based sea ice thickness information. Both methods have a complementary sensitivity to different thickness classes and optimal interpolation is employed for gap-less sea ice thickness information in the northern hemisphere since November 2010. The data record is generated for the ESA funded MOS & CryoSat-2 Sea Ice Data Product Processing and Dissemination Service (CS2SMOS-PDS). We discuss the characteristics of the data set and provide an overview of intended evolutions of the data set, specifically improvements to the spatial resolutions, a potential extension to the southern hemisphere and the addition of other available satellite sensors to the optimal interpolation. Within the context of the mass balance of the cryosphere we will share our thoughts on the significance of the CryoSat-2/SMOS based sea ice volume time series for climate applications in the context of its comparable short temporal and how this information can be presented more consistently to other components of the cryosphere
    corecore