19 research outputs found

    First Assessment of NOx Sources at a Regional Background Site in North China Using Isotopic Analysis Linked with Modeling

    Get PDF
    important role in the formation of atmospheric particles. Thus, NOx emission reduction is critical for improving air quality, especially in severely air-polluted regions (e.g., North China). In this study, the source of NOx was investigated by the isotopic composition (delta N-15) of particulate nitrate (p-NO3-) at Beihuangcheng Island (BH), a regional background site in North China. It was found that the delta N-15-NO3- (n = 120) values varied between -1.7 parts per thousand and +24.0 parts per thousand and the delta O-18-NO3- values ranged from 49.4 parts per thousand to 103.9 parts per thousand. On the basis of the Bayesian mixing model, 27.78 +/- 8.89%, 36.53 +/- 6.66%, 22.01 +/- 6.92%, and 13.68 +/- 3.16% of annual NOx could be attributed to biomass burning, coal combustion, mobile sources, and biogenic soil emissions, respectively. Seasonally, the four sources were similar in spring and fall. Biogenic soil emissions were augmented in summer in association with the hot and rainy weather. Coal combustion increased significantly in winter with other sources showing an obvious decline. This study confirmed that isotope-modeling by delta N-15-NO3- is a promising tool for partitioning NOx sources and provides guidance to policymakers with regard to options for NOx reduction in North China

    CERNAS: Current Evolution and Research Novelty in Agricultural Sustainability

    Get PDF
    Climate changes pose overwhelming impacts on primary production and, consequently, on agricultural and animal farming. Additionally, at present, agriculture still depends strongly on fossil fuels both for energy and production factors ,such as synthetized inorganic fertilizers and harmful chemicals such as pesticides. The need to feed the growing world population poses many challenges. The need to reduce environmental impacts to a minimum, maintain healthy ecosystems, and improve soil microbiota are central to ensuring a promising future for coming generations. Livestock production under cover crop systems helps to alleviate compaction so that oxygen and water can sufficiently flow in the soil, add organic matter, and help hold soil in place, reducing crusting and protecting against erosion. The use of organic plant production practices allied to the control of substances used in agriculture also decisively contributes to alleviating the pressure on ecosystems. Some of the goals of this new decade are to use enhanced sustainable production methodologies to improve the input/output ratios of primary production, reduce environmental impacts, and rely on new innovative technologies. This reprint addresses original studies and reviews focused on the current evolution and research novelty in agricultural sustainability. New developments are discussed on issues related to quality of soil, natural fertilizers, or the sustainable use of land and water. Also, crop protection techniques are pivotal for sustainable food production under the challenges of the Sustainable Development Goals of the United Nations, allied to innovative weed control methodologies as a way to reduce the utilization of pesticides. The role of precision and smart agriculture is becoming more pertinent as communication technologies improve at a rapid rate. Waste management, reuse of agro-industrial residues, extension of shelf life, and use of new technologies are ways to reduce food waste, all contributing to higher sustainability in food supply chains, leading to a more rational use of natural resources. The unquestionable role of bees as pollinators and contributors to biodiversity is adjacent to characterizing beekeeping activities, which in turn contributes, together with the valorization of endemic varieties of plant foods, to the development of local communities. Finally, the short circuits and local food markets have a decisive role in the preservation and enhancement of rural economies.info:eu-repo/semantics/publishedVersio

    CERNAS – Current Evolution and Research Novelty in Agricultural Sustainability

    Get PDF
    This book addresses original studies and reviews focused on the current evolution and research novelty in agricultural sustainability. New developments are discussed on issues related with quality of soil, natural fertilizers or the sustainable use of land and water. Also crop protection techniques are pivotal for the sustainable food production under the challenges of the Sustainable Development Goals of the United Nations, allied to innovative weed control methodologies, as a way to reduce the utilization of pesticides. The role of precision and smart agriculture is becoming more pertinent as the communication technologies improve at a high rate. Waste management, reuse of agro industrial residues, extension of shelf life and use of new technologies are ways to reduce food waste, all contributing to a higher sustainability of the food supply chains, leading to a more rational use of natural resources. The unquestionable role of bees as pollinators and contributors for biodiversity is subjacent to the work of characterization of beekeeping activities, which in turn contribute, together with the valorization of endemic varieties of plant foods, for the development of local communities. Finally, the short circuits and local food markets have a decisive role in the preservation and enhancement of rural economies.info:eu-repo/semantics/publishedVersio

    Heavy Metals Accumulation, Toxicity and Detoxification in Plants

    Get PDF
    In recent years, heavy metals have been widely used in agricultural, chemical, domestic, and technological applications, causing environmental and soil contaminations. Heavy metals enter the plant system through soil or via the atmosphere, and can accumulate, affecting physiological processes, plant growth, yield, and human health if heavy metals are stored in edible tissues. Understanding the regulation mechanisms of plant heavy metals accumulation and partitioning is important to improve the safety of the food chain. In this Special Issue book, a total of 19 articles were included; four reviews covering phytoremediation, manganese phytotoxicity in plants, the effect of cadmium on plant development, the genetic characteristics of Cd accumulation, and the research status of genes and QTLs in rice, respectively, as well as fifteen original research articles, mainly regarding the impact of cadmium on plants. Cadmium was therefore the predominant topic of this Special Issue, increasing the attention of the research community on the negative impacts determined by cadmium or cadmium associated with other heavy metals. The articles have highlighted a great genetic variability, suggesting different possibilities for accumulation, translocation and the reduction or control of heavy metal toxicity in plants

    Towards COP27: The Water-Food-Energy Nexus in a Changing Climate in the Middle East and North Africa

    Get PDF
    Due to its low adaptability to climate change, the MENA region has become a "hot spot". Water scarcity, extreme heat, drought, and crop failure will worsen as the region becomes more urbanized and industrialized. Both water and food scarcity are made worse by civil wars, terrorism, and political and social unrest. It is unclear how climate change will affect the MENA water–food–energy nexus. All of these concerns need to be empirically evaluated and quantified for a full climate change assessment in the region. Policymakers in the MENA region need to be aware of this interconnection between population growth, rapid urbanization, food safety, climate change, and the global goal of lowering greenhouse gas emissions (as planned in COP27). Researchers from a wide range of disciplines have come together in this SI to investigate the connections between water, food, energy, and climate in the region. By assessing the impacts of climate change on hydrological processes, natural disasters, water supply, energy production and demand, and environmental impacts in the region, this SI will aid in implementation of sustainable solutions to these challenges across multiple spatial scales

    Chemical composition of PM2.5 from two tunnels with different vehicular fleet characteristics

    No full text
    The chemical compositions of PM(2.)5 including OC, EC, water soluble ions, elements, and organic components such as polycyclic aromatic hydrocarbons (PAHs), hopanes, and steranes, emitted in Wuzushan (WZS) and Kuixinglou (IOW tunnels were determined. WZS tunnel is a major route for diesel vehicles traveling, while KXL tunnel has limited to diesel vehicles. The results showed that the proportions of the different constituents of PM2.5 in the Wuzushan (WZS) tunnel were OC (27.7%), EC (32.1%), elements (13.9%), and water soluble ions (9.2%). Whereas the chemical profile of PM2.5 in the Kuixinglou (KXL) tunnel was OC (17.7%), EC (10.4%), elements (8.90%), and water soluble ions (8.87%). The emission factors (EFs) of PM2.5 and proportions of SO42- and Pb were decreased by vehicle emission standards and fuel quality policy in China, and the higher molecular weight PAHs (4 + 5 + 6 rings) were more abundant than the lower molecular weight PAH5 (2 + 3 rings) in the two tunnels. The proportions of 17A( H)-21B(H)-30-Norhopane and 17A(H)-21B(H)-Hopane in the hopane and sterane were not dependent on the vehicles types. In addition, specific composition profiles for PM2.5 from gasoline -fueled vehicles (CV) and diesel-fueled vehicles (DV) emissions were drafted, which indicated that OC (0.974 mg.veh(-1).km(-1)) was the most abundant component in PM2.5, followed by Fe, CI, and Mg for GV. The relative proportions of the different constituents in the PM2.5 for DV were EC (35.9%), OC (27.2%), elements (12.8%), and water soluble ions (117%). Both the PM2.5 ER and EC proportions in DV were higher than those in GV, and the HMW PAHs were the dominant PAHs for both GV and DV. The PM2.5 emissions from the vehicles in Yantai were 581 +/- 513 tons to 1353 +/- 1197 tons for GV, and 19,627 +/- 2477 tons to 23,042 +/- 2887 tons for DV, respectively. (C) 2016 Elsevier B.V. All rights reserved

    Flux and budget of BC in the continental shelf seas adjacent to Chinese high BC emission source regions

    No full text
    This study conducted the first comprehensive investigation of sedimentary black carbon (BC) concentration, flux, and budget in the continental shelves of Bohai Sea (BS) and Yellow Sea (YS), based on measurements of BC in 191 surface sediments, 36 riverine water, and 2 seawater samples, as well as the reported data set of the atmospheric samples from seven coastal cities in the Bohai Rim. BC concentrations in these matrices were measured using the method of thermal/optical reflectance. The spatial distribution of the BC concentration in surface sediments was largely influenced by the regional hydrodynamic conditions, with high values mainly occurring in the central mud areas where fine-grained particles (median diameters>6 (i.e., <0.0156mm)) were deposited. The BC burial flux in the BS and YS ranged from 4 to 1100 mu g/cm(2)yr, and averaged 166200 mu g/cm(2)yr, which was within the range of burial fluxes reported in other continental shelf regimes. The area-integrated sedimentary BC sink flux in the entire BS and YS was 325Gg/yr, and the BS alone contributed 50% (157Gg/yr). The BC budget calculated in the BS showed that atmospheric deposition, riverine discharge, and import from the Northern Yellow Sea (NYS) each contributed 51%, 47%, and 2%. Therefore, atmospheric deposition and riverine discharge dominated the total BC influx (98%). Sequestration to bottom sediments was the major BC output pattern, accounting for 88% of the input BC. Water exchange between the BS and the NYS was also an important BC transport route, with net BC transport from the BS to the NYS

    Emission factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    Get PDF
    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbour districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel-engine-powered offshore vessels in China (350, 600 and 1600aEuro-kW) were measured in this study. Concentrations, fuel-based and power-based emission factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emission factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low-engine-power vessel (HH) than for the two higher-engine-power vessels (XYH and DFH); for instance, HH had NOx EF (emission factor) of 25.8aEuro-gaEuro-kWh(-1) compared to 7.14 and 6.97aEuro-gaEuro-kWh(-1) of DFH, and XYH, and PM EF of 2.09aEuro-gaEuro-kWh(-1) compared to 0.14 and 0.04aEuro-gaEuro-kWh(-1) of DFH, and XYH. Average emission factors for all pollutants except sulfur dioxide in the low-engine-power engineering vessel (HH) were significantly higher than that of the previous studies (such as 30.2aEuro-gaEuro-kg(-1) fuel of CO EF compared to 2.17 to 19.5aEuro-gaEuro-kg(-1) fuel in previous studies, 115aEuro-gaEuro-kg(-1) fuel of NOx EF compared to 22.3 to 87aEuro-gaEuro-kg(-1) fuel in previous studies and 9.40aEuro-gaEuro-kg(-1) fuel of PM EF compared to 1.2 to 7.6aEuro-gaEuro-kg(-1) fuel in previous studies), while for the two higher-engine-power vessels (DFH and XYH), most of the average emission factors for pollutants were comparable to the results of the previous studies, engine type was one of the most important influence factors for the differences. Emission factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. The test inland ships and some test offshore vessels in China always had higher EFs for CO, NOx, and PM than previous studies. Besides, due to the significant influence of engine type on shipping emissions and that no accurate local EFs could be used in inventory calculation, much more measurement data for different vessels in China are still in urgent need. Best-fit engine speeds during actual operation should be based on both emission factors and economic costs

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology
    corecore