14 research outputs found

    A low-tech, cost-effective and efficient method for safeguarding genetic diversity by direct cryopreservation of poultry embryonic reproductive cells

    Get PDF
    Chickens are an important resource for smallholder farmers who raise locally adapted, genetically distinct breeds for eggs and meat. The development of efficient reproductive technologies to conserve and regenerate chicken breeds safeguards existing biodiversity and secures poultry genetic resources for climate resilience, biosecurity, and future food production. The majority of the over 1600 breeds of chicken are raised in low and lower to middle income countries under resource-limited, small-scale production systems, which necessitates a low-tech, cost-effective means of conserving diversity is needed. Here, we validate a simple biobanking technique using cryopreserved embryonic chicken gonads. The gonads are quickly isolated, visually sexed, pooled by sex, and cryopreserved. Subsequently, the stored material is thawed and dissociated before injection into sterile host chicken embryos. By using pooled GFP and RFP-labelled donor gonadal cells and Sire Dam Surrogate mating, we demonstrate that chicks deriving entirely from male and female donor germ cells are hatched. This technology will enable ongoing efforts to conserve chicken genetic diversity for both commercial and smallholder farmers, and to preserve existing genetic resources at poultry research facilities

    Typology, management and smallholder farmer-preferred traits for selection of indigenous goats (Capra hisrcus) in three agro-ecological zones in the Democratic Republic of Congo

    Get PDF
    The present study aimed to assess the typology, production management, and smallholder farmer-preferred traits in selecting indigenous goats in three agro-ecological zones (AEZs) in the Democratic Republic of Congo (DR Congo). Based on a structured survey, baseline data were recorded on 320 adults and unrelated does from 202 goat farms. Hierarchical clustering on principal components revealed three clusters in the goats studied well distinguished by double and triple kidding. Prolific goats mostly clustered into cluster two and three more represented by goats of South Kivu while 82.69% of goats in Tshopo were clustered into cluster one characterized by low reproductive performances. The Canonical Discriminant Analysis revealed that the body length was an important variable both to discriminate and to classify goats from the three AEZs. Goats from Kinshasa and South Kivu were not distanced while large distance was observed between goats from Kinshasa and Tshopo (F-stat, p < 0.001). While not subjected to any good management practices, goats were considered as a source of income and saving method in smallholder farmers' households. Adaptability, resistance to disease and prolificacy were preferred traits by farmers in selecting goats. These results give the first step in the decision-making towards goat improvement in DR Congo

    Multilateral benefit-sharing from digital sequence information will support both science and biodiversity conservation

    Get PDF
    Open access to sequence data is a cornerstone of biology and biodiversity research, but has created tension under the United Nations Convention on Biological Diversity (CBD). Policy decisions could compromise research and development, unless a practical multilateral solution is implemented.This workwas funded by the German Federal Ministry of Education and Research (BMBF) WiLDSI 031B0862 (A.H.S., J.O., and J.F.) and Horizon Europe EVA-GLOBAL 871029 (A.H.S.). I.K.M. was supported by the National Center for Biotechnology Information of the National Library of Medicine, National Institutes of Health

    Phenotypic diversity and phylogenetic relationship between the Bakosi/Baweri and other pig breeds (Sus scrofa Domesticus) in the humid forest with monomodal rainfall agro-ecological zone of Cameroon

    No full text
    The present study was conducted from April to May 2017 in the humid forest with monomodal rainfall (agro-ecological) zone of Cameroon with the following geographical coordinates: 44˚10’00’’- 5˚50’00’’LN and 9˚10’00’’- 9˚30’00’’LE. The objective was to describe and determine the morphology, biometric characteristics, prediction equation of live weight and the genetic variability of this pig population of the humid forest with monomodal rainfall agro-ecological zone of Cameroon. For this purpose, a data collection scope of 19 traits (quantitative and qualitative) was conducted on a total of 208 pigs including males and females from two divisions and six sub-divisions of the South West Region of Cameroon. The main results show that the black coat colour (44.7%) is dominant with majority of pigs having black (51.06%) skin pigmentation. Moreover, majority of pigs are rectilinear (48.6%) with large (53.4%) erect (48.1%) ears which are mostly oriented forwards (39.9). The pigs are mostly docile (53.8%) and have curly tails (55.3%). The main body measurements (in cm) gave the following values: body length (87.28±2.18), heart girth (79.59±1.89), height at withers (58.36±1.22), eye distance (16.85±0.30), ear length (21.48±0.55), head length (30.00±6.59), snoot length (13.60±0.30), hock circumference (20.36±0.47), tail length (27.37±0.63) and the average live weight (in kg 61.56±5.03). The hearth girth best predict the live weight of pigs in the humid forest with monomodal rainfall agro-ecological zone of Cameroon. The polynomial equations with highest coefficients (LW= 0.039HG2 - 6.259HG +305.7 R2=0.930, LW= 0.028HG2 - 3.498HG+ 132 R2=0.899) best predict the live weight of the exotic and crossbreeds respectively while the power equation with the highest coefficient (LW= 3E-06HG3.782 R2=0.229) best predict that of Bakosi/Bakweri breeds. The principal component analysis (PCA) revealed that the first three components explain 77.34% of the genetic variability in the studied population. The discriminant analysis (DA) suggested that the population is made of three genetic types (I, II and III) with genetic type III having the highest characteristics. The dendrogram showed that type I and II are closest and type II and III are genetically more distant. In conclusion, the genetic variability obtained within the population offers possibilities for their genetic improvement by convention methods of selection and crossing.Keywords: biodiversity, biometric characteristics, Cameroon, pi

    Data_Sheet_2_Genome-Wide Association Study of Growth Performance and Immune Response to Newcastle Disease Virus of Indigenous Chicken in Rwanda.docx

    No full text
    A chicken genome has several regions with quantitative trait loci (QTLs). However, replication and confirmation of QTL effects are required particularly in African chicken populations. This study identified single nucleotide polymorphisms (SNPs) and putative genes responsible for body weight (BW) and antibody response (AbR) to Newcastle disease (ND) in Rwanda indigenous chicken (IC) using genome-wide association studies (GWAS). Multiple testing was corrected using chromosomal false detection rates of 5 and 10% for significant and suggestive thresholds, respectively. BioMart data mining and variant effect predictor tools were used to annotate SNPs and candidate genes, respectively. A total of four significant SNPs (rs74098018, rs13792572, rs314702374, and rs14123335) significantly (p ≤ 7.6E−5) associated with BW were identified on chromosomes (CHRs) 8, 11, and 19. In the vicinity of these SNPs, four genes such as pre-B-cell leukaemia homeobox 1 (PBX1), GPATCH1, MPHOSPH6, and MRM1 were identified. Four other significant SNPs (rs314787954, rs13623466, rs13910430, and rs737507850) all located on chromosome 1 were strongly (p ≤ 7.6E−5) associated with chicken antibody response to ND. The closest genes to these four SNPs were cell division cycle 16 (CDC16), zinc finger, BED-type containing 1 (ZBED1), myxovirus (influenza virus) resistance 1 (MX1), and growth factor receptor bound protein 2 (GRB2) related adaptor protein 2 (GRAP2). Besides, other SNPs and genes suggestively (p ≤ 1.5E−5) associated with BW and antibody response to ND were reported. This work offers a useful entry point for the discovery of causative genes accountable for essential QTLs regulating BW and antibody response to ND traits. Results provide auspicious genes and SNP-based markers that can be used in the improvement of growth performance and ND resistance in IC populations based on gene-based and/or marker-assisted breeding selection.</p

    Data_Sheet_1_Genome-Wide Association Study of Growth Performance and Immune Response to Newcastle Disease Virus of Indigenous Chicken in Rwanda.zip

    No full text
    A chicken genome has several regions with quantitative trait loci (QTLs). However, replication and confirmation of QTL effects are required particularly in African chicken populations. This study identified single nucleotide polymorphisms (SNPs) and putative genes responsible for body weight (BW) and antibody response (AbR) to Newcastle disease (ND) in Rwanda indigenous chicken (IC) using genome-wide association studies (GWAS). Multiple testing was corrected using chromosomal false detection rates of 5 and 10% for significant and suggestive thresholds, respectively. BioMart data mining and variant effect predictor tools were used to annotate SNPs and candidate genes, respectively. A total of four significant SNPs (rs74098018, rs13792572, rs314702374, and rs14123335) significantly (p ≤ 7.6E−5) associated with BW were identified on chromosomes (CHRs) 8, 11, and 19. In the vicinity of these SNPs, four genes such as pre-B-cell leukaemia homeobox 1 (PBX1), GPATCH1, MPHOSPH6, and MRM1 were identified. Four other significant SNPs (rs314787954, rs13623466, rs13910430, and rs737507850) all located on chromosome 1 were strongly (p ≤ 7.6E−5) associated with chicken antibody response to ND. The closest genes to these four SNPs were cell division cycle 16 (CDC16), zinc finger, BED-type containing 1 (ZBED1), myxovirus (influenza virus) resistance 1 (MX1), and growth factor receptor bound protein 2 (GRB2) related adaptor protein 2 (GRAP2). Besides, other SNPs and genes suggestively (p ≤ 1.5E−5) associated with BW and antibody response to ND were reported. This work offers a useful entry point for the discovery of causative genes accountable for essential QTLs regulating BW and antibody response to ND traits. Results provide auspicious genes and SNP-based markers that can be used in the improvement of growth performance and ND resistance in IC populations based on gene-based and/or marker-assisted breeding selection.</p

    Haplotype analysis of the mitochondrial DNA d-loop region reveals the maternal origin and historical dynamics among the indigenous goat populations in east and west of the Democratic Republic of Congo

    Get PDF
    This study aimed at assessing haplotype diversity and population dynamics of three Congolese indigenous goat populations that included Kasai goat (KG), small goat (SG), and dwarf goat (DG) of the Democratic Republic of Congo (DRC). The 1169 bp d-loop region of mitochondrial DNA (mtDNA) was sequenced for 339 Congolese indigenous goats. The total length of sequences was used to generate the haplotypes and evaluate their diversities, whereas the hypervariable region (HVI, 453 bp) was analyzed to define the maternal variation and the demographic dynamic. A total of 568 segregating sites that generated 192 haplotypes were observed from the entire d-loop region (1169 bp d-loop). Phylogenetic analyses using reference haplotypes from the six globally defined goat mtDNA haplogroups showed that all the three Congolese indigenous goat populations studied clustered into the dominant haplogroup A, as revealed by the neighbor-joining (NJ) tree and median-joining (MJ) network. Nine haplotypes were shared between the studied goats and goat populations from Pakistan (1 haplotype), Kenya, Ethiopia and Algeria (1 haplotype), Zimbabwe (1 haplotype), Cameroon (3 haplotypes), and Mozambique (3 haplotypes). The population pairwise analysis (F-ST) indicated a weak differentiation between the Congolese indigenous goat populations. Negative and significant (p-value <.05) values for Fu's Fs (-20.418) and Tajima's (-2.189) tests showed the expansion in the history of the three Congolese indigenous goat populations. These results suggest a weak differentiation and a single maternal origin for the studied goats. This information will contribute to the improvement of the management strategies and long-term conservation of indigenous goats in DRC
    corecore