28 research outputs found

    Risk factors for death and illness severity in vaccinated versus unvaccinated COVID-2019 inpatients: a retrospective cohort study

    Get PDF
    ABSTRACT Objective: To determine the clinical profile of COVID-19 inpatients who were vaccinated prior to hospitalization and to compare the risk factors for death and the 28-day survival rate of between those inpatients vaccinated with one, two, or three doses and unvaccinated COVID-19 inpatients. Methods: This was a retrospective observational cohort study involving COVID-19 patients admitted to a referral hospital in the city of Recife, Brazil, between July of 2020 and June of 2022. Results: The sample comprised 1,921 inpatients, 996 of whom (50.8%) were vaccinated prior to hospitalization. After adjusting the mortality risk for vaccinated patients, those undergoing invasive mechanical ventilation (IMV) had the highest mortality risk (adjusted OR [aOR] = 7.4; 95% CI, 3.8-14.1; p 80 years of age (aOR = 7.3; 95% CI, 3.4-15.4; p < 0.001), and those needing vasopressors (aOR = 5.6; 95% CI, 2.9-10.9; p < 0.001). After adjusting the mortality risk for all patients, having received three vaccine doses (aOR = 0.06; 95% CI, 0.03-0.11; p < 0.001) was the most important protective factor against death. There were progressive benefits of vaccination, reducing the frequency of ICU admissions, use for IMV, and death (respectively, from 44.9%, 39.0% and 39.9% after the first dose to 16.7%, 6.2% and 4.4% after the third dose), as well as significant improvements in survival after each subsequent dose (p < 0.001). Conclusions: Vaccines were effective in reducing illness severity and death in this cohort of COVID-19 inpatients, and the administration of additional doses conferred them with accumulative vaccine protection

    Predicting the Proteins of Angomonas deanei, Strigomonas culicis and Their Respective Endosymbionts Reveals New Aspects of the Trypanosomatidae Family

    Get PDF
    Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. in an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. the monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. the monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. the assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine metabolism. These findings increase our understanding of the intricate symbiotic relationship between the bacterium and the trypanosomatid host and provide clues to better understand eukaryotic cell evolution.Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)ERC AdG SISYPHEUniv Fed Rio de Janeiro, Inst Biofis Carlos Chagas Filho, Lab Ultraestrutura Celular Hertha Meyer, BR-21941 Rio de Janeiro, BrazilUniv Fed Rio de Janeiro, Inst Biofis Carlos Chagas Filho, Lab Metab Macromol Firmino Torres de Castro, BR-21941 Rio de Janeiro, BrazilLab Bioinformat, Lab Nacl Computacao Cient, Rio de Janeiro, BrazilINRIA Grenoble Rhone Alpes, BAMBOO Team, Villeurbanne, FranceUniv Lyon 1, CNRS, UMR5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, FranceUniv Estadual Campinas, Inst Biol, Dept Genet Evolucao & Bioagentes, São Paulo, BrazilUniv São Paulo, Fac Ciencias Farmaceut Ribeirao Preto, Dept Ciencias Farmaceut, São Paulo, BrazilLab Nacl Ciencia & Tecnol Bioetano, São Paulo, BrazilUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Bioquim & Imunol, Belo Horizonte, MG, BrazilUniv Fed Goias, Inst Ciencias Biol, Mol Biol Lab, Goiania, Go, BrazilFundacao Oswaldo Cruz, Inst Carlos Chagas, Lab Biol Mol Tripanossomatideos, Curitiba, Parana, BrazilFundacao Oswaldo Cruz, Inst Carlos Chagas, Lab Genom Func, Curitiba, Parana, BrazilUniv Estadual Campinas, Ctr Pluridisciplinar Pesquisas Quim Biol & Agr, São Paulo, BrazilUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Parasitol, Belo Horizonte, MG, BrazilUniv Fed Santa Catarina, Dept Microbiol Imunol & Parasitol, Ctr Ciencias Biol, Lab Protozool & Bioinformat, Florianopolis, SC, BrazilUniv Fed Vicosa, Dept Bioquim & Biol Mol, Ctr Ciencias Biol & Saude, Vicosa, MG, BrazilInst Butantan, Lab Especial Ciclo Celular, São Paulo, BrazilUniv São Paulo, Dept Biol, Fac Filosofia Ciencias & Letras Ribeirao Preto, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilWeb of Scienc

    Tyramine exerts hypolipidemic and anti-obesity effects in vivo

    No full text
    Obesity and dyslipidemia are conditions often associated with cardiovascular risk, inflammation, oxidative stress, and death. Thus, a new approach has been highlighted to promote research and development of pharmacological tools derived from natural sources. Among the most widely studied groups of substances, polyphenols such as tyramine stand out. This study investigated hypolipidemic and anti-obesity properties of tyramine. Oral toxicity evaluation, models of dyslipidemia and obesity were used. To induce dyslipidemia, Poloxamer-407 (P-407) was administered intraperitoneally. In the hypercholesterolemic and obesity model, specific diet and oral tyramine were provided. After 24h of P-407 administration, tyramine 2 mg/kg (T2) decreased triglycerides (TG) (2057.0 ± 158.5 mg/dL vs. 2838 ± 168.3 mg/dL). After 48h, TG were decreased by T2 (453.0 ± 35.47 vs. 760.2 ± 41.86 mg/dL) and 4 mg/kg (T4) (605.8 ± 26.61 760.2 ± 41.86 mg/dL). T2 reduced total cholesterol (TC) after 24h (309.0 ± 11.17 mg/dL vs. 399.7 ± 15.7 mg/dL); After 48h, 1 mg/kg (T1) (220.5 ± 12.78 mg/dL), T2 (205.8 ± 7.1 mg/dL) and T4 (216.8 ± 12.79 mg/dL), compared to P-407 (275.5 ± 12.1 mg/dL). The treatment decreased thiobarbituric acid reactive substances and nitrite in liver, increased superoxide dismutase, reduced the diet-induced dyslipidemia, decreasing TC around 15%. Tyramine reduced body mass, glucose, and TC after hypercaloric feed. Treatment with 5 mg/L (0.46 ± 0.04 ng/dL) and 10 mg/L (0.44 ± 0.02 ng/dL) reduced plasma insulin (1.18 ± 0.23 ng/dL). Tyramine increased adiponectin at 5 mg/L (1.02 ± 0.02 vs. 0.83 ± 0.02 ng/mL) and 10mg/L (0.96 ± 0.04 ng/mL). In conclusion, tyramine has low toxicity in rodents, has antioxidant effect, reduces plasma triglycerides and cholesterol levels. However, further studies should be conducted in rodents and non-rodents to better understand the pharmacodynamic and pharmacokinetic properties of tyramine

    Members of the Fts family and PBPs that are present in endosymbionts of <i>A. deanei</i> and <i>S. culicis</i>.

    No full text
    <p>nd: not determined.</p

    Protein Reference Sequence-Guided Assembly data of <i>A. deanei</i> and <i>S. culicis</i> genomes.

    No full text
    <p>Protein Reference Sequence-Guided Assembly data of <i>A. deanei</i> and <i>S. culicis</i> genomes.</p

    Numbers of ORFs identified in <i>A. deanei</i> and <i>S. culicis</i> and their symbionts, according to the mechanisms of DNA replication and repair, signal transduction, transcription and translation.

    No full text
    <p>Numbers of ORFs identified in <i>A. deanei</i> and <i>S. culicis</i> and their symbionts, according to the mechanisms of DNA replication and repair, signal transduction, transcription and translation.</p

    Purine production, acquisition, and utilization in <i>A. deanei</i> and <i>S. culicis.</i>

    No full text
    <p>The figure illustrates the production, acquisition and utilization of purines in the host trypanosomes considering the presence of endosymbiont enzymes. This model suggests that the trypanosomatid acquires purines from the symbiont, which synthesizes them <i>de novo</i>. Some ecto-localized proteins, such as apyrase (APY) and adenosine deaminase (ADA), could be responsible for the generation of extracellular nucleosides, nucleobases, and purines. Nucleobases and purines could be acquired by the parasite through membrane transporters (T) or diffusion and could be incorporated into DNA, RNA, and kDNA molecules after “purine salvage pathway” processing. Abbreviations: NTP (nucleoside tri-phosphate), NDP (nucleoside di-phosphate), NMP (nucleoside mono- phosphate), N (nucleobase), ADO (adenosine), INO (inosine).</p
    corecore