8 research outputs found

    Amazonia Camtrap: a data set of mammal, bird, and reptile species recorded with camera traps in the Amazon forest.

    Get PDF
    Abstract : The Amazon forest has the highest biodiversity on Earth. However, information on Amazonian vertebrate diversity is still deficient and scatteredacross the published, peer-reviewed, and gray literature and in unpublishedraw data. Camera traps are an effective non-invasive method of surveying vertebrates, applicable to different scales of time and space. In this study, we organized and standardized camera trap records from different Amazonregions to compile the most extensive data set of inventories of mammal,bird, and reptile species ever assembled for the area. The complete data setcomprises 154,123 records of 317 species (185 birds, 119 mammals, and13 reptiles) gathered from surveys from the Amazonian portion of eightcountries (Brazil, Bolivia, Colombia, Ecuador, French Guiana, Peru,Suriname, and Venezuela). The most frequently recorded species per taxawere: mammals:Cuniculus paca (11,907 records); birds: Pauxi tuberosa (3713 records); and reptiles:Tupinambis teguixin(716 records). The infor-mation detailed in this data paper opens up opportunities for new ecological studies at different spatial and temporal scales, allowing for a moreaccurate evaluation of the effects of habitat loss, fragmentation, climatechange, and other human-mediated defaunation processes in one of themost important and threatened tropical environments in the world. The data set is not copyright restricted; please cite this data paper when usingits data in publications and we also request that researchers and educator sinform us of how they are using these data

    Development of methodology for measurements of residual stresses in welded joint based on displacement of points in a coordinated table

    No full text
    Residual stresses in a welded joint of ASTM A131 grade AH32 steel was measured either by the X-ray diffraction or by displacements of referenced points measured on a coordinate measuring machine before and after heat treatment. For all tests, the welding was performed with Shielded Metal Arc Welding, vertical-up position, by a certified welder. After welding, some specimens were subjected to marking, made through small holes evenly spaced and mapped on a coordinate measuring machine. After labeling, the samples were subjected to heat treatment at temperatures nearby recrystallization. After heat treatment, the samples were subjected to new measurements by coordinate measuring machine to evaluate the displacements of the points produced by the recrystallization. In parallel, residual stress measurements were made by XRD for validation of this new methodology. The results obtained either by X-ray or by coordinate measuring machine showed a good correlation between the two measurement methodologies employed

    The Back Stress Behavior Study Analyzed in Residual Stress of Welded Naval Plates in Different Lamination Directions and Different Thermal Contributions

    No full text
    <div><p>The lamination process adds the anisotropy characteristic in the final product. This anisotropy influences the yield strength according to the direction in question, the difference between the value of the yield tension in one direction and the value of the yield tension in another direction referred to as the back stress. Naval plates were welded by the GMAW process in the longitudinal direction to the lamination and in the transverse direction, and with different thermal loads. The residual stresses were calculated by displacement coordinate points method (DCP) and the back stress was found by tensile tests in specimen subjected made with either the longitudinal lamination direction and transverse lamination direction. The material used was ASTM A131 naval steel grade AH-36. The welded plates with greater thermal load in the longitudinal direction presented smaller residual stress in this direction, in relation to the transverse lamination direction. In the welded plates with greater thermal load, in the transverse lamination direction, the displacements in different directions were close, showing that the back stress does not act reversing the displacement (flow). Finally, for the welded plates with lower thermal load, both welded in the longitudinal and transverse direction, the displacements were small. In addition, the back stress did not act reversing such displacements.</p></div

    Welded Joints' Heat Affected Zone's Extension Prediction by Switching Welding Parameters

    No full text
    <div><p>Choosing welding parameters is an important step in welding process, directly influencing in the heat input provided to welded joints. This heat input value, along with temperature distribution in welded joints, provides, to the drafter, conditions of predicting the Heat Affected Zone (HAZ) extension, the kind of microstructure to be formed, and therefore, the effects of residual stress. Three welding parameters were switched, providing different welding conditions. Each condition was analyzed by SmartWeld 2011 software and macrography to find and compare the extension of HAZ. As for the residual stresses, calculated through Displacement of Coordinated Points (DCP) method. It is possible to choose the best parameters for the welded joint by GMAW process considering the parameters in study.</p></div

    Measurement of Residual Stresses in Welded Joints by DCP Method

    No full text
    <div><p>Residual stresses on welded joints have been studied by several methods. In this present work, residual stresses was measured by a novel methodology under development named Displacement of Coordinated Points (DCP). To evaluate anisotropy effects in steel plates, two directions of the weld bead were considered: Welding was performed in both parallel and transversal direction of rolled steel plate ASTM A131 grade AH36.The experiments showed higher values of the residual stress in the transversal direction of the lamination when compared with the longitudinal direction, evidencing the anisotropy effect of the material. It was also observed that the increasing in heat input induces higher residual stress.</p></div

    AMAZONIA CAMTRAP: A data set of mammal, bird, and reptile species recorded with camera traps in the Amazon forest

    Get PDF
    The Amazon forest has the highest biodiversity on Earth. However, information on Amazonian vertebrate diversity is still deficient and scattered across the published, peer-reviewed, and gray literature and in unpublished raw data. Camera traps are an effective non-invasive method of surveying vertebrates, applicable to different scales of time and space. In this study, we organized and standardized camera trap records from different Amazon regions to compile the most extensive data set of inventories of mammal, bird, and reptile species ever assembled for the area. The complete data set comprises 154,123 records of 317 species (185 birds, 119 mammals, and 13 reptiles) gathered from surveys from the Amazonian portion of eight countries (Brazil, Bolivia, Colombia, Ecuador, French Guiana, Peru, Suriname, and Venezuela). The most frequently recorded species per taxa were: mammals: Cuniculus paca (11,907 records); birds: Pauxi tuberosa (3713 records); and reptiles: Tupinambis teguixin (716 records). The information detailed in this data paper opens up opportunities for new ecological studies at different spatial and temporal scales, allowing for a more accurate evaluation of the effects of habitat loss, fragmentation, climate change, and other human-mediated defaunation processes in one of the most important and threatened tropical environments in the world. The data set is not copyright restricted; please cite this data paper when using its data in publications and we also request that researchers and educators inform us of how they are using these data
    corecore