34 research outputs found

    Glucocorticoid-induced cell death is mediated through reduced glucose metabolism in lymphoid leukemia cells

    Get PDF
    Malignant cells are known to have increased glucose uptake and accelerated glucose metabolism. Using liquid chromatography and mass spectrometry, we found that treatment of acute lymphoblastic leukemia (ALL) cells with the glucocorticoid (GC) dexamethasone (Dex) resulted in profound inhibition of glycolysis. We thus demonstrate that Dex reduced glucose consumption, glucose utilization and glucose uptake by leukemic cells. Furthermore, Dex treatment decreased the levels of the plasma membrane-associated glucose transporter GLUT1, thus revealing the mechanism for the inhibition of glucose uptake. Inhibition of glucose uptake correlated with induction of cell death in ALL cell lines and in leukemic blasts from ALL patients cultured ex vivo. Addition of di-methyl succinate could partially overcome cell death induced by Dex in RS4;11 cells, thereby further supporting the notion that inhibition of glycolysis contributes to the induction of apoptosis. Finally, Dex killed RS4;11 cells significantly more efficiently when cultured in lower glucose concentrations suggesting that modulation of glucose levels might influence the effectiveness of GC treatment in ALL. In summary, our data show that GC treatment blocks glucose uptake by leukemic cells leading to inhibition of glycolysis and that these effects play an important role in the induction of cell death by these drugs

    MiR-200c Regulates Noxa Expression and Sensitivity to Proteasomal Inhibitors

    Get PDF
    The pro-apoptotic p53 target Noxa is a BH3-only protein that antagonizes the function of selected anti-apoptotic Bcl-2 family members. While much is known regarding the transcriptional regulation of Noxa, its posttranscriptional regulation remains relatively unstudied. In this study, we therefore investigated whether Noxa is regulated by microRNAs. Using a screen combining luciferase reporters, bioinformatic target prediction analysis and microRNA expression profiling, we identified miR-200c as a negative regulator of Noxa expression. MiR-200c was shown to repress basal expression of Noxa, as well as Noxa expression induced by various stimuli, including proteasomal inhibition. Luciferase reporter experiments furthermore defined one miR-200c target site in the Noxa 3′UTR that is essential for this direct regulation. In spite of the miR-200c:Noxa interaction, miR-200c overexpression led to increased sensitivity to the clinically used proteasomal inhibitor bortezomib in several cell lines. This apparently contradictory finding was reconciled by the fact that in cells devoid of Noxa expression, miR-200c overexpression had an even more pronounced positive effect on apoptosis induced by proteasomal inhibition. Together, our data define miR-200c as a potentiator of bortezomib-induced cell death. At the same time, we show that miR-200c is a novel negative regulator of the pro-apoptotic Bcl-2 family member Noxa

    Modulation of apoptosis by V protein mumps virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Urabe AM9 vaccine strain of mumps virus contains two variants of V protein: VWT (of HN-A1081 viral population) and VGly (of HN-G1081). The V protein is a promoting factor of viral replication by blocking the IFN antiviral pathway.</p> <p>Findings</p> <p>We studied the relationship between V protein variants and IFN-α2b-induced apoptosis. V proteins decrease activation of the extrinsic IFN-α2b-induced apoptotic pathway monitored by the caspase 8 activity, being the effect greater with the VWT protein. Both V proteins decrease the activity of caspase 9 of the intrinsic apoptotic pathway. In a system without IFN, the VWT and VGly proteins expression promotes activation of caspases 3 and 7. However, when the cellular system was stimulated with IFN-α, this activity decreased partially. TUNEL assay shows that for treatment with IFN-α and ibuprofen of cervical adenocarcinoma cells there is nuclear DNA fragmentation but the V protein expression reduces this process.</p> <p>Conclusions</p> <p>The reduction in the levels of caspases and DNA fragmentation, suggesting that V protein, particularly VWT protein of Urabe AM9 vaccine strain, modulates apoptosis. In addition, the VWT protein shows a protective role for cell proliferation in the presence of antiproliferative signals.</p

    Phase III trial of postoperative cisplatin, interferon alpha-2b, and 5-FU combined with external radiation treatment versus 5-FU alone for patients with resected pancreatic adenocarcinoma – CapRI: study protocol [ISRCTN62866759]

    Get PDF
    After surgical intervention with curative intention in specialised centres the five-year survival of patients with carcinoma of the exocrine pancreas is only 15%. The ESPAC-1 trial showed an increased five-year survival of 21% achieved with adjuvant chemotherapy. Investigators from the Virginia Mason Clinic have reported a 5-year survival rate of 55% in a phase II trial evaluating adjuvant chemotherapy, immunotherapy and external-beam radiation. DESIGN: The CapRI study is an open, controlled, prospective, randomised multi-centre phase III trial. Patients in study arm A will be treated as outpatients with 5-Fluorouracil; Cisplatin and 3 million units Interferon alpha-2b for 5 1/2 weeks combined with external beam radiation. After chemo-radiation the patients receive continuous 5-FU infusions for two more cycles. Patients in study arm B will be treated as outpatients with intravenous bolus injections of folinic acid, followed by intravenous bolus injections of 5-FU given on 5 consecutive days every 28 days for 6 cycles. A total of 110 patients with specimen-proven R0 or R1 resected pancreatic adenocarcinoma will be enrolled. An interim analysis for patient safety reasons will be done one year after start of recruitment. Evaluation of the primary endpoint will be performed two years after the last patients' enrolment. DISCUSSION: The aim of this study is to evaluate the overall survival period attained by chemo-radiotherapy including interferon alpha 2b administration with adjuvant chemotherapy. The influence of interferon alpha on the effectiveness of the patients' chemoradiation regimen, the toxicity, the disease-free interval and the quality of life are analysed. Different factors are tested in terms of their potential role as predictive markers

    Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells.</p> <p>Methods</p> <p>Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR.</p> <p>Results</p> <p>SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation.</p> <p>Conclusions</p> <p>These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ.</p

    ‘Becoming’ a possible threat: masculinity, culture and questioning among unaccompanied young men in Sweden

    No full text
    A debate on masculinity and immigration rose across Europe in 2015 after an incident with sexual harassments taking place in Cologne, Germany. The incident refuelled a debate positioning unaccompanied young men as a possible threat. This article is based on a research project where we during this time ethnographically followed 20 young men, having arrived in Sweden as ‘unaccompanied’ minors. The aim is to examine how the young men themselves talk about, reflect on and negotiate masculinity and gender during this period. The article concludes that masculinity cannot be approached as something stable easily being inherited or transferred from one’s origins. One difference for ‘unaccompanied’ young men is how conflicts or tensions emerging in relation to issues of gender and masculinity tend to be interpreted differently, and publicly, putting the young men in a ‘gendered situation of questioning’

    Interferon α Induces Nucleus-independent Apoptosis by Activating Extracellular Signal-regulated Kinase 1/2 and c-Jun NH2-Terminal Kinase Downstream of Phosphatidylinositol 3-Kinase and Mammalian Target of Rapamycin

    No full text
    Interferon (IFN)α induces apoptosis via Bak and Bax and the mitochondrial pathway. Here, we investigated the role of known IFNα-induced signaling cascades upstream of Bak activation. By pharmacological and genetic inhibition of the kinases protein kinase C (PKC)δ, extracellular signal-regulated kinase (ERK), and c-Jun NH2-terminal kinase (JNK) in U266-1984 and RHEK-1 cells, we could demonstrate that all three enzymes are critical for the apoptosis-associated mitochondrial events and apoptotic cell death induced by IFNα, at a step downstream of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR). Furthermore, the activation of JNK was found to occur in a PKCδ/ERK-dependent manner. Inhibition of these kinases did not affect the canonical IFNα-stimulated Janus tyrosine kinase-signal transducer and activator of transcription signaling or expression of IFN-responsive genes. Therefore, enucleated cells (cytoplasts) were examined for IFNα-induced apoptosis, to test directly whether this process depends on gene transcription. Cytoplasts were found to undergo apoptosis after IFNα treatment, as analyzed by several apoptosis markers by using flow cytometry, live cell imaging, and biochemical analysis of flow-sorted cytoplasts. Furthermore, inhibition of mTOR, ERK, and JNK blocked IFNα-induced apoptosis in cytoplasts. In conclusion, IFNα-induced apoptosis requires activation of ERK1/2, PKCδ, and JNK downstream of PI3K and mTOR, and it can occur in a nucleus-independent manner, thus demonstrating for the first time that IFNα induces apoptosis in the absence of de novo transcription
    corecore