240 research outputs found
A chemokine network of T cell exhaustion and metabolic reprogramming in renal cell carcinoma
Renal cell carcinoma (RCC) is frequently infiltrated by immune cells, a process which is governed by chemokines. CD8+ T cells in the RCC tumor microenvironment (TME) may be exhausted which most likely influence therapy response and survival. The aim of this study was to evaluate chemokine-driven T cell recruitment, T cell exhaustion in the RCC TME, as well as metabolic processes leading to their functional anergy in RCC. Eight publicly available bulk RCC transcriptome collectives (n=1819) and a single cell RNAseq dataset (n=12) were analyzed. Immunodeconvolution, semi-supervised clustering, gene set variation analysis and Monte Carlo-based modeling of metabolic reaction activity were employed. Among 28 chemokine genes available, CXCL9/10/11/CXCR3, CXCL13/CXCR5 and XCL1/XCR1 mRNA expression were significantly increased in RCC compared to normal kidney tissue and also strongly associated with tumor-infiltrating effector memory and central memory CD8+ T cells in all investigated collectives. M1 TAMs, T cells, NK cells as well as tumor cells were identified as the major sources of these chemokines, whereas T cells, B cells and dendritic cells were found to predominantly express the cognate receptors. The cluster of RCCs characterized by high chemokine expression and high CD8+ T cell infiltration displayed a strong activation of IFN/JAK/STAT signaling with elevated expression of multiple T cell exhaustion-associated transcripts. Chemokinehigh RCCs were characterized by metabolic reprogramming, in particular by downregulated OXPHOS and increased IDO1-mediated tryptophan degradation. None of the investigated chemokine genes was significantly associated with survival or response to immunotherapy. We propose a chemokine network that mediates CD8+ T cell recruitment and identify T cell exhaustion, altered energy metabolism and high IDO1 activity as key mechanisms of their suppression. Concomitant targeting of exhaustion pathways and metabolism may pose an effective approach to RCC therapy
Decrease in treatment intensity predicts worse outcome in patients with locally advanced head and neck squamous cell carcinoma undergoing radiochemotherapy
PURPOSE: Radiochemotherapy (RCT) is an effective standard therapy for locally advanced head and neck squamous cell carcinoma (LA-HNSCC). Nonetheless, toxicity is common, with patients often requiring dose modifications. METHODS: To investigate associations of RCT toxicities according to CTCAE version 5.0 and subsequent therapy modifications with short- and long-term treatment outcomes, we studied all 193 patients with HNSCC who received RCT (70 Gy + platinum agent) at an academic center between 03/2010 and 04/2018. RESULTS: During RCT, 77 (41%, 95% CI 34-49) patients developed at least one ≥ grade 3 toxicity, including seven grade 4 and 3 fatal grade 5 toxicities. The most frequent any-grade toxicities were xerostomia (n = 187), stomatitis (n = 181), dermatitis (n = 174), and leucopenia (n = 98). Eleven patients (6%) had their radiotherapy schedule modified (mean radiotherapy dose reduction = 12 Gy), and 120 patients (64%) had chemotherapy modifications (permanent discontinuation: n = 67, pause: n = 34, dose reduction: n = 7, change to other chemotherapy: n = 10). Objective response rates to RCT were 55% and 88% in patients with and without radiotherapy modifications (p = 0.003), and 84% and 88% in patients with and without chemotherapy modifications (p = 0.468), respectively. Five-year progression-free survival estimates were 20% and 50% in patients with and without radiotherapy modifications (p = < 0.001), and 53% and 40% in patients with and without chemotherapy modifications (p = 0.88), respectively. CONCLUSIONS: Reductions of radiotherapy dose were associated with impaired long-term outcomes, whereas reductions in chemotherapy intensity were not. This suggests that toxicities during RCT should be primarily managed by modifying chemotherapy rather than radiotherapy
ADAM8 in squamous cell carcinoma of the head and neck: a retrospective study
<p>Abstract</p> <p>Background</p> <p>A disintegrin and metalloproteinase (ADAMs) have been associated with multiple malignancies. ADAMs are involved in cell fusion, cell migration, membrane protein shedding and proteolysis. ADAM8 has been found to be overexpressed in squamous cell carcinomas of the lung. A new study showed that ADAM8 is significantly overexpressed in metastasis of squamous cell carcinomas of the head and neck (HNSCC).</p> <p>Methods</p> <p>We determined ADAM8 levels in the serum of 79 HNSCC patients at the time of diagnosis, in 35 patients 3 months after treatment and in 10 patients 1 year after therapy and compared the results to the sera of 31 healthy volunteers. We also constructed tissue microarrays to detect ADAM8 immunohistochemically in 100 patients. The results were correlated with the survival data of the patients to determine the diagnostic and prognostic value.</p> <p>Results</p> <p>The data demonstrated that patients with high ADAM8 expression in the tumor have worse survival rates. We found that high ADAM8 serum levels correlated with high ADAM8 expression in tumor samples. Soluble ADAM8 levels did not show any prognostic or diagnostic properties.</p> <p>Conclusion</p> <p>In summary ADAM8 expression is a prognostic factor for survival of patients with head and neck squamous cell carcinoma.</p
Multicenter, double-blind, randomized, intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for MR angiography of peripheral arteries
Purpose: To prospectively compare the image quality and diagnostic performance achieved with doses of gadobenate dimeglumine and gadopentetate dimeglumine of 0.1 mmol per kilogram of body weight in patients undergoing contrast material-enhanced magnetic resonance (MR) angiography of the pelvis, thigh, and lower-leg (excluding foot) for suspected or known peripheral arterial occlusive disease. Materials and Methods: Institutional review board approval was granted from each center and informed written consent was obtained from all patients. Between November 2006 and January 2008, 96 patients (62 men, 34 women;mean age, 63.7 years \ub1 10.4 [standard deviation];range, 39-86 years) underwent two identical examinations at 1.5 T by using three-dimensional spoiled gradient-echo sequences and randomized 0.1-mmol/kg doses of each agent. Images were evaluated on-site for technical adequacy and quality of vessel visualization and offsite by three independent blinded readers for anatomic delineation and detection/exclusion of pathologic features. Comparative diagnostic performance was determined in 31 patients who underwent digital subtraction angiography. Data were analyzed by using the Wilcoxon signed-rank, McNemar, and Wald tests. Interreader agreement was determined by using generalized \u3ba statistics. Differences in quantitative contrast enhancement were assessed and a safety evaluation was performed. Results: Ninety-two patients received both agents. Significantly better performance ( P > .0001; all evaluations) with gadobenate dimeglumine was noted on-site for technical adequacy and vessel visualization quality and offsite for anatomic delineation and detection/exclusion of pathologic features. Contrast enhancement(P 64 .0001) and detection of clinically relevant disease(P 64 .0028) were significantly improved with gadobenate dimeglumine. Interreader agreement for stenosis detection and grading was good to excellent (\u3ba = 0.749 and 0.805, respectively). Mild adverse events were reported for four (six events) and five (eight events) patients after gadobenate dimeglumine and gadopentetate dimeglumine, respectively. Conclusion: Higher-quality vessel visualization, greater contrast enhancement, fewer technical failures, and improved diagnostic performance are obtained with gadobenate dimeglumine, relative to gadopentetate dimeglumine, when compared intraindividually at 0.1-mmol/kg doses in patients undergoing contrast-enhanced MR angiography for suspected peripheral arterial occlusive disease
Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions
<p>Abstract</p> <p>Background</p> <p>Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied.</p> <p>Methods</p> <p>In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses.</p> <p>Results</p> <p>Under normoxic conditions, a half maximal inhibitory concentration (IC<sub>50</sub>) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions.</p> <p>Conclusion</p> <p>Our results suggest that BA is capable of improving the effects of tumor therapy in human malignant glioma cells, particularly under hypoxic conditions. Further investigations are necessary to characterize its potential as a radiosensitizer.</p
A potent betulinic acid analogue ascertains an antagonistic mechanism between autophagy and proteasomal degradation pathway in HT-29 cells
Betulinic acid (BA), a member of pentacyclic triterpenes has shown important biological activities like
anti-bacterial, anti-malarial, anti-inflammatory and most interestingly anticancer property. To overcome its poor
aqueous solubility and low bioavailability, structural modifications of its functional groups are made to generate
novel lead(s) having better efficacy and less toxicity than the parent compound. BA analogue, 2c was found most
potent inhibitor of colon cancer cell line, HT-29 cells with IC50 value 14.9 μM which is significantly lower than
standard drug 5-fluorouracil as well as parent compound, Betulinic acid. We have studied another mode of PCD,
autophagy which is one of the important constituent of cellular catabolic system as well as we also studied
proteasomal degradation pathway to investigate whole catabolic pathway after exploration of 2c on HT-29 cells.
Mechanism of autophagic cell death was studied using fluorescent dye like acridine orange (AO) and
monodansylcadaverin (MDC) staining by using fluorescence microscopy. Various autophagic protein expression
levels were determined by Western Blotting, qRT-PCR and Immunostaining. Confocal Laser Scanning Microscopy
(CLSM) was used to study the colocalization of various autophagic proteins. These were accompanied by formation
of autophagic vacuoles as revealed by FACS and transmission electron microscopy (TEM). Proteasomal degradation
pathway was studied by proteasome-Glo™ assay systems using luminometer.The formation of autophagic vacuoles in HT-29 cells after 2c treatment was determined by fluorescence
staining – confirming the occurrence of autophagy. In addition, 2c was found to alter expression levels of different autophagic proteins like Beclin-1, Atg 5, Atg 7, Atg 5-Atg 12, LC3B and autophagic adapter protein, p62. Furthermore we found the formation of autophagolysosome by colocalization of LAMP-1 with LC3B, LC3B with Lysosome, p62 with lysosome. Finally, as proteasomal degradation pathway downregulated after 2c treatment colocalization of ubiquitin
with lysosome and LC3B with p62 was studied to confirm that protein degradation in autophagy induced HT-29 cells
follows autolysosomal pathway. In summary, betulinic acid analogue, 2c was able to induce autophagy in HT-29 cells and as proteasomal degradation pathway downregulated after 2c treatment so protein degradation in autophagy induced HT-29 cell
Functional Energetics of CD4+-Cellular Immunity in Monoclonal Antibody-Associated Progressive Multifocal Leukoencephalopathy in Autoimmune Disorders
BACKGROUND: Progressive multifocal leukoencephalopathy (PML) is an opportunistic central nervous system- (CNS-) infection that typically occurs in a subset of immunocompromised individuals. An increasing incidence of PML has recently been reported in patients receiving monoclonal antibody (mAb) therapy for the treatment of autoimmune diseases, particularly those treated with natalizumab, efalizumab and rituximab. Intracellular CD4(+)-ATP-concentration (iATP) functionally reflects cellular immunocompetence and inversely correlates with risk of infections during immunosuppressive therapy. We investigated whether iATP may assist in individualized risk stratification for opportunistic infections during mAb-treatment. METHODOLOGY/PRINCIPAL FINDINGS: iATP in PHA-stimulated, immunoselected CD4(+)-cells was analyzed using an FDA-approved assay. iATP of mAb-associated PML (natalizumab (n = 8), rituximab (n = 2), efalizumab (n = 1)), or other cases of opportunistic CNS-infections (HIV-associated PML (n = 2), spontaneous PML, PML in a psoriasis patient under fumaric acids, natalizumab-associated herpes simplex encephalitis (n = 1 each)) was reduced by 59% (194.5±29 ng/ml, mean±SEM) in comparison to healthy controls (HC, 479.9±19.8 ng/ml, p<0.0001). iATP in 14 of these 16 patients was at or below 3(rd) percentile of healthy controls, similar to HIV-patients (n = 18). In contrast, CD4(+)-cell numbers were reduced in only 7 of 15 patients, for whom cell counts were available. iATP correlated with mitochondrial transmembrane potential (ΔΨ(m)) (iATP/ΔΨ(m)-correlation:tau = 0.49, p = 0.03). Whereas mean iATP of cross-sectionally analysed natalizumab-treated patients was unaltered (448.7±12 ng/ml, n = 150), iATP was moderately decreased (316.2±26.1 ng/ml, p = 0.04) in patients (n = 7) who had been treated already during the pivotal phase III trials and had received natalizumab for more than 6 years. 2/92 (2%) patients with less than 24 months natalizumab treatment revealed very low iATP at or below the 3(rd) percentile of HC, whereas 10/58 (17%) of the patients treated for more than 24 months had such low iATP-concentrations. CONCLUSION: Our results suggest that bioenergetic parameters such as iATP may assist in risk stratification under mAb-immunotherapy of autoimmune disorders
- …