398 research outputs found

    DNA Spools under Tension

    Full text link
    DNA-spools, structures in which DNA is wrapped and helically coiled onto itself or onto a protein core are ubiquitous in nature. We develop a general theory describing the non-equilibrium behavior of DNA-spools under linear tension. Two puzzling and seemingly unrelated recent experimental findings, the sudden quantized unwrapping of nucleosomes and that of DNA toroidal condensates under tension are theoretically explained and shown to be of the same origin. The study provides new insights into nucleosome and chromatin fiber stability and dynamics

    Chemistry courses as the turning point for premedical students

    Get PDF
    Previous research has documented that negative experiences in chemistry courses are a major factor that discourages many students from continuing in premedical studies. This adverse impact affects women and students from under-represented minority (URM) groups disproportionately. To determine if chemistry courses have a similar effect at a large public university, we surveyed 1,036 students from three entering cohorts at the University of California, Berkeley. We surveyed students at the beginning of their first year at the university and again at the end of their second year. All subjects had indicated an interest in premedical studies at the time they entered the university. We conducted follow-up interviews with a stratified sub-set of 63 survey respondents to explore the factors that affected their level of interest in premedical studies. Using a 10-point scale, we found that the strength of interest in premedical studies declined for all racial/ethnic groups. In the follow-up interviews, students identified chemistry courses as the principal factor contributing to their reported loss of interest. URM students especially often stated that chemistry courses caused them to abandon their hopes of becoming a physician. Consistent with reports over more than 50 years, it appears that undergraduate courses in chemistry have the effect of discouraging otherwise qualified students, as reflected in their admission to one of the most highly selective public universities in the US, from continuing in premedical studies, especially in the case of URM students. Reassessment of this role for chemistry courses may be overdue

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt

    New Insights into Mutable Collagenous Tissue: Correlations between the Microstructure and Mechanical State of a Sea-Urchin Ligament

    Get PDF
    The mutable collagenous tissue (MCT) of echinoderms has the ability to undergo rapid and reversible changes in passive mechanical properties that are initiated and modulated by the nervous system. Since the mechanism of MCT mutability is poorly understood, the aim of this work was to provide a detailed morphological analysis of a typical mutable collagenous structure in its different mechanical states. The model studied was the compass depressor ligament (CDL) of a sea urchin (Paracentrotus lividus), which was characterized in different functional states mimicking MCT mutability. Transmission electron microscopy, histochemistry, cryo-scanning electron microscopy, focused ion beam/scanning electron microscopy, and field emission gun-environmental scanning electron microscopy were used to visualize CDLs at the micro- and nano-scales. This investigation has revealed previously unreported differences in both extracellular and cellular constituents, expanding the current knowledge of the relationship between the organization of the CDL and its mechanical state. Scanning electron microscopies in particular provided a three-dimensional overview of CDL architecture at the micro- and nano-scales, and clarified the micro-organization of the ECM components that are involved in mutability. Further evidence that the juxtaligamental cells are the effectors of these changes in mechanical properties was provided by a correlation between their cytology and the tensile state of the CDLs

    Assembly of Silver Nanoparticles into Hollow Spheres Using Eu(III) Compound based on Trifluorothenoyl-Acetone

    Get PDF
    The preparation of luminescent silver hollow spheres using Eu(III) compound based on trifluorothenoyl-acetone is described. The structure and size of silver hollow spheres were determined by TEM images. The result shows the formation of hollow structure and average size of the silver hollow spheres (0.9 μm). The silver hollow spheres were further characterized by UV absorption spectrum, SNOM and SEM images, suggesting them to be formed by self-assemble of some isolated silver nanoparticles. The luminescent properties of them were also investigated and they are shown to be high emission strength; moreover, they offer the distinct advantage of a lower packing density compared with other commercial luminescent products

    Using shared needles for subcutaneous inoculation can transmit bluetongue virus mechanically between ruminant hosts

    Get PDF
    Bluetongue virus (BTV) is an economically important arbovirus of ruminants that is transmitted by Culicoides spp. biting midges. BTV infection of ruminants results in a high viraemia, suggesting that repeated sharing of needles between animals could result in its iatrogenic transmission. Studies defining the risk of iatrogenic transmission of blood-borne pathogens by less invasive routes, such as subcutaneous or intradermal inoculations are rare, even though the sharing of needles is common practice for these inoculation routes in the veterinary sector. Here we demonstrate that BTV can be transmitted by needle sharing during subcutaneous inoculation, despite the absence of visible blood contamination of the needles. The incubation period, measured from sharing of needles, to detection of BTV in the recipient sheep or cattle, was substantially longer than has previously been reported after experimental infection of ruminants by either direct inoculation of virus, or through blood feeding by infected Culicoides. Although such mechanical transmission is most likely rare under field condition, these results are likely to influence future advice given in relation to sharing needles during veterinary vaccination campaigns and will also be of interest for the public health sector considering the risk of pathogen transmission during subcutaneous inoculations with re-used needles

    A Dose-Escalation Study of Recombinant Human Interleukin-18 Using Two Different Schedules of Administration in Patients with Cancer

    Get PDF
    Purpose: Interleukin-18 (IL-18) is an immunostimulatory cytokine with antitumor activity in preclinical models. A phase I study of recombinant human IL-18 (rhIL-18) was done to determine the toxicity, pharmacokinetics, and biological activities of rhIL-18 administered at different doses in two different schedules to patients with advanced cancer. Experimental design: Cohorts of three to four patients were given escalating doses of rhIL-18 as a 2-h i.v. infusion either on 5 consecutive days repeated every 28 days (group A) or once a week (group B) for up to 6 months. Toxicities were graded using standard criteria. Blood samples were obtained for safety, pharmacokinetic, and pharmacodynamic measurements. Results: Nineteen patients (10 melanoma and 9 renal cell cancer) were given rhIL-18 in doses of 100, 500, or 1,000 microg/kg (group A) or 100, 1,000, or 2,000 microg/kg (group B). Common side effects included chills, fever, headache, fatigue, and nausea. Common laboratory abnormalities included transient, asymptomatic grade 1 to 3 lymphopenia, grade 1 to 4 hyperglycemia, grade 1 to 2 anemia, neutropenia, hypoalbuminemia, liver enzyme elevations, and serum creatinine elevations. No dose-limiting toxicities were observed. Biological effects of rhIL-18 included transient lymphopenia and increased expression of activation antigens on lymphocytes. Increases in serum concentrations of IFN-gamma, granulocyte macrophage colony-stimulating factor, and IL-18-binding protein were observed following dosing. Conclusions: rhIL-18 can be given in biologically active doses by either weekly infusions or daily infusions for 5 days repeated every 28 days to patients with advanced cancer. Toxicity was generally mild to moderate, and a maximum tolerated dose of rhIL-18 by either schedule was not determined

    Deletion and Down-Regulation of HRH4 Gene in Gastric Carcinomas: A Potential Correlation with Tumor Progression

    Get PDF
    Background: Histamine is an established growth factor for gastrointestinal malignancies. The effect of histamine is largely determined locally by the histamine receptor expression pattern. Histamine receptor H4 (HRH4), the newest member of the histamine receptor family, is positively expressed on the epithelium of the gastrointestinal tract, and its function remains to be elucidated. Previously, we reported the decreased expression of HRH4 in colorectal cancers and revealed its correlation with tumor proliferation. In the current study, we aimed to investigate the abnormalities of HRH4 gene in gastric carcinomas (GCs). Methodology/Principal Findings: We analyzed H4R expression in collected GC samples by quantitative PCR, Western blot analysis, and immunostaining. Our results showed that the protein and mRNA levels of HRH4 were reduced in some GC samples, especially in advanced GC samples. Copy number decrease of HRH4 gene was observed (17.6%, 23 out of 131), which was closely correlated with the attenuated expression of H4R. In vitro studies, using gastric cancer cell lines, showed that the alteration of HRH4 expression on gastric cancer cells influences tumor growth upon exposure to histamine. Conclusions/Significance: We show for the first time that deletion of HRH4 gene is present in GC cases and is closely correlated with attenuated gene expression. Down-regulation of HRH4 in gastric carcinomas plays a role in histaminemediate

    H4 Histamine Receptors Mediate Cell Cycle Arrest in Growth Factor-Induced Murine and Human Hematopoietic Progenitor Cells

    Get PDF
    The most recently characterized H4 histamine receptor (H4R) is expressed preferentially in the bone marrow, raising the question of its role during hematopoiesis. Here we show that both murine and human progenitor cell populations express this receptor subtype on transcriptional and protein levels and respond to its agonists by reduced growth factor-induced cell cycle progression that leads to decreased myeloid, erythroid and lymphoid colony formation. H4R activation prevents the induction of cell cycle genes through a cAMP/PKA-dependent pathway that is not associated with apoptosis. It is mediated specifically through H4R signaling since gene silencing or treatment with selective antagonists restores normal cell cycle progression. The arrest of growth factor-induced G1/S transition protects murine and human progenitor cells from the toxicity of the cell cycle-dependent anticancer drug Ara-C in vitro and reduces aplasia in a murine model of chemotherapy. This first evidence for functional H4R expression in hematopoietic progenitors opens new therapeutic perspectives for alleviating hematotoxic side effects of antineoplastic drugs
    corecore