1,740 research outputs found

    Asymptotic analysis of displaced lunar orbits

    Get PDF
    The design of spacecraft trajectories is a crucial task in space mission design. Solar sail technology appears as a promising form of advanced spacecraft propulsion which can enable exciting new space science mission concepts such as solar system exploration and deep space observation. Although solar sailing has been considered as a practical means of spacecraft propulsion only relatively recently, the fundamental ideas are by no means new (see McInnes1 for a detailed description). A solar sail is propelled by reflecting solar photons and therefore can transform the momentum of the photons into a propulsive force. Solar sails can also be utilised for highly non-Keplerian orbits, such as orbits displaced high above the ecliptic plane (see Waters and McInnes2). Solar sails are especially suited for such non-Keplerian orbits, since they can apply a propulsive force continuously. In such trajectories, a sail can be used as a communication satellite for high latitudes. For example, the orbital plane of the sail can be displaced above the orbital plane of the Earth, so that the sail can stay fixed above the Earth at some distance, if the orbital periods are equal (see Forward3). Orbits around the collinear points of the Earth-Moon system are also of great interest because their unique positions are advantageous for several important applications in space mission design (see e.g. Szebehely4, Roy,5 Vonbun,6 Thurman et al.,7 Gomez et al.8, 9). Several authors have tried to determine more accurate approximations (quasi-Halo orbits) of such equilibrium orbits10. These orbits were first studied by Farquhar11, Farquhar and Kamel10, Breakwell and Brown12, Richardson13, Howell14, 15.If an orbit maintains visibility from Earth, a spacecraft on it (near the L2 point) can be used to provide communications between the equatorial regions of the Earth and the lunar poles. The establishment of a bridge for radio communications is crucial for forthcoming space missions, which plan to use the lunar poles.McInnes16 investigated a new family of displaced solar sail orbits near the Earth-Moon libration points.Displaced orbits have more recently been developed by Ozimek et al.17 using collocation methods. In Baoyin and McInnes18, 19, 20 and McInnes16, 21, the authors describe new orbits which are associated with artificial Lagrange points in the Earth-Sun system. These artificial equilibria have potential applications for future space physics and Earth observation missions. In McInnes and Simmons22, the authors investigate large new families of solar sail orbits, such as Sun-centered halo-type trajectories, with the sail executing a circular orbit of a chosen period above the ecliptic plane. We have recently investigated displaced periodic orbits at linear order in the Earth-Moon restricted three-body system, where the third massless body is a solar sail (see Simo and McInnes23). These highly non-Keplerian orbits are achieved using an extremely small sail acceleration. It was found that for a given displacement distance above/below the Earth-Moon plane it is easier by a factor of order 3.19 to do so at L4=L5 compared to L1=L2 - ie. for a fixed sail acceleration the displacement distance at L4=L5 is greater than that at L1=L2. In addition, displaced L4=L5 orbits are passively stable, making them more forgiving to sail pointing errors than highly unstable orbits at L1=L2.The drawback of the new family of orbits is the increased telecommunications path-length, particularly the Moon-L4 distance compared to the Moon-L2 distance

    Designing displaced lunar orbits using low-thrust propulsion

    Get PDF
    The design of spacecraft trajectories is a crucial task in space mission design. Solar sail technology appears as a promising form of advanced spacecraft propulsion which can enable exciting new space science mission concepts such as solar system exploration and deep space observation. Although solar sailing has been considered as a practical means of spacecraft propulsion only relatively recently, the fundamental ideas are by no means new (see McInnes1 for a detailed description). A solar sail is propelled by re ecting solar photons and therefore can transform the momentum of the photons into a propulsive force. This article focuses on designing displaced lunar orbits using low-thrust propulsion

    The Characterization of Pseudo-Sn,r Sets

    Full text link

    Real-time depth sectioning: Isolating the effect of stress on structure development in pressure-driven flow

    Get PDF
    Transient structure development at a specific distance from the channel wall in a pressure-driven flow is obtained from a set of real-time measurements that integrate contributions throughout the thickness of a rectangular channel. This “depth sectioning method” retains the advantages of pressure-driven flow while revealing flow-induced structures as a function of stress. The method is illustrated by applying it to isothermal shear-induced crystallization of an isotactic polypropylene using both synchrotron x-ray scattering and optical retardance. Real-time, depth-resolved information about the development of oriented precursors reveals features that cannot be extracted from ex-situ observation of the final morphology and that are obscured in the depth-averaged in-situ measurements. For example, at 137 °C and at the highest shear stress examined (65 kPa), oriented thread-like nuclei formed rapidly, saturated within the first 7 s of flow, developed significant crystalline overgrowth during flow and did not relax after cessation of shear. At lower stresses, threads formed later and increased at a slower rate. The depth sectioning method can be applied to the flow-induced structure development in diverse complex fluids, including block copolymers, colloidal systems, and liquid-crystalline polymers

    Siren songs or path to salvation? Interpreting the visions of web technology at a UK regional newspaper in crisis, 2006-11

    Get PDF
    A 5-year case study of an established regional newspaper in Britain investigates journalists about their perceptions of convergence in digital technologies. This research is the first ethnographic longitudinal case study of a UK regional newspaper. Although conforming to some trends observed in the wider field of scholarship, the analysis adds to skepticism about any linear or directional views of innovation and adoption: the Northern Echo newspaper journalists were observed to have revised their opinions of optimum Web practices, and sometimes radically reversed policies. Technology is seen in the period as a fluid, amorphous entity. Central corporate authority appeared to diminish in the period as part of a wider reduction in formalism. Questioning functionalist notions of the market, the study suggests cause and effect models of change are often subverted by contradictory perceptions of particular actions. Meanwhile, during technological evolution, the ‘professional imagination’ can be understood as strongly reflecting the parent print culture and its routines, despite pioneering a new convergence partnership with an independent television company

    Familial thymic aplasia - Attempted reconstitution with fetal thymus in a Millipore diffusion chamber

    Get PDF
    A 10-week-old female infant with familial congenital thymic aplasia without delayed hypersensitivity to common skin-test antigens underwent fetal-thymus implantation. Six hours after the implantation of a fetal thymus enclosed in a Millipore chamber phytohemagglutinin responsiveness was demonstrable in the patient's peripheral lymphocytes. The infant's death of aspiration pneumonia nine days after implantation did not allow evaluation of the extent of the immunologic reconstitution. Thymic-cell immunologic function can be induced in man with fetal-thymus humoral factors
    corecore