49 research outputs found

    Renal outcomes of agalsidase beta treatment for Fabry disease: role of proteinuria and timing of treatment initiation

    Get PDF
    BACKGROUND: The purpose of this study was to identify determinants of renal disease progression in adults with Fabry disease during treatment with agalsidase beta. METHODS: Renal function was evaluated in 151 men and 62 women from the Fabry Registry who received agalsidase beta at an average dose of 1 mg/kg/2 weeks for at least 2 years. Patients were categorized into quartiles based on slopes of estimated glomerular filtration rate (eGFR) during treatment. Multivariate logistic regression analyses were used to identify factors associated with renal disease progression. RESULTS: Men within the first quartile had a mean eGFR slope of -0.1 mL/min/1.73m(2)/year, whereas men with the most rapid renal disease progression (Quartile 4) had a mean eGFR slope of -6.7 mL/min/1.73m(2)/year. The risk factor most strongly associated with renal disease progression was averaged urinary protein:creatinine ratio (UP/Cr) ≥1 g/g (odds ratio 112, 95% confidence interval (95% CI) 4-3109, P = 0.0054). Longer time from symptom onset to treatment was also associated with renal disease progression (odds ratio 19, 95% CI 2-184, P = 0.0098). Women in Quartile 4 had the highest averaged UP/Cr (mean 1.8 g/g) and the most rapid renal disease progression: (mean slope -4.4 mL/min/1.73m(2)/year). CONCLUSIONS: Adults with Fabry disease are at risk for progressive loss of eGFR despite enzyme replacement therapy, particularly if proteinuria is ≥1 g/g. Men with little urinary protein excretion and those who began receiving agalsidase beta sooner after the onset of symptoms had stable renal function. These findings suggest that early intervention may lead to optimal renal outcomes

    Substrate Reduction Augments the Efficacy of Enzyme Therapy in a Mouse Model of Fabry Disease

    Get PDF
    Fabry disease is an X-linked glycosphingolipid storage disorder caused by a deficiency in the activity of the lysosomal hydrolase α-galactosidase A (α-gal). This deficiency results in accumulation of the glycosphingolipid globotriaosylceramide (GL-3) in lysosomes. Endothelial cell storage of GL-3 frequently leads to kidney dysfunction, cardiac and cerebrovascular disease. The current treatment for Fabry disease is through infusions of recombinant α-gal (enzyme-replacement therapy; ERT). Although ERT can markedly reduce the lysosomal burden of GL-3 in endothelial cells, variability is seen in the clearance from several other cell types. This suggests that alternative and adjuvant therapies may be desirable. Use of glucosylceramide synthase inhibitors to abate the biosynthesis of glycosphingolipids (substrate reduction therapy, SRT) has been shown to be effective at reducing substrate levels in the related glycosphingolipidosis, Gaucher disease. Here, we show that such an inhibitor (eliglustat tartrate, Genz-112638) was effective at lowering GL-3 accumulation in a mouse model of Fabry disease. Relative efficacy of SRT and ERT at reducing GL-3 levels in Fabry mouse tissues differed with SRT being more effective in the kidney, and ERT more efficacious in the heart and liver. Combination therapy with ERT and SRT provided the most complete clearance of GL-3 from all the tissues. Furthermore, treatment normalized urine volume and uromodulin levels and significantly delayed the loss of a nociceptive response. The differential efficacies of SRT and ERT in the different tissues indicate that the combination approach is both additive and complementary suggesting the possibility of an improved therapeutic paradigm in the management of Fabry disease

    Autopsy findings in late-onset Pompe disease: A case report and systematic review of the literature

    No full text
    Background Late-onset Pompe disease (LOPD) is a rare cause of declining proximal muscle strength and respiratory function that can also affect other organ systems. The development of enzyme replacement therapy has made it one of the few inherited muscle disorders with treatment, but clinical response is difficult to assess due to the variable and often slow progression of illness. A better understanding of the disease\u27s systemic effects can be gleaned through autopsy findings. Purpose The purpose of this study was to: (1) describe the histological findings observed in LOPD, (2) provide correlations between reported histological and clinical findings, and (3) review the literature on autopsy findings in LOPD. Methods Histological evaluation of autopsy tissues from a 62-year-old woman with LOPD was conducted. A clinical history was obtained by review of the medical records. The literature was reviewed for previously reported histological and clinical findings in LOPD. Based on this case report and information from prior publications, histological and clinical findings for the disease were correlated. Results Histologic examination revealed mostly mild vacuolar myopathy typical of glycogen accumulation within skeletal and smooth muscle cells. The most prominent vacuolar myopathy was in quadriceps muscle, which also exhibited chronic myositis with degenerating and regenerating muscle fibers. Transmission electron microscopy disclosed lysosomal glycogen accumulation within skeletal, cardiac, and vascular smooth muscle cells, correlating with published case reports of basilar artery and ascending aortic aneurysms and carotid artery dissection. Organs containing smooth muscle cells (the bladder, intestine, and esophagus) were also affected, explaining reports of symptoms such as urinary incontinence and dysphagia. In addition to glycogen accumulation, there was obvious damage to the contraction apparatus of myofibrils within cardiac and skeletal muscle cells. These histological and ultrastructural findings correlate with the clinical manifestations of LOPD. Conclusions This study is the first to describe histological findings of LOPD utilizing both traditional paraffin-processed tissues and epoxy resin embedded tissues for high-resolution light microscopy. The findings are similar to those seen in previous studies, but with improved morphological detail and glycogen preservation. This patient exhibited histological involvement of multiple organs, correlating with the clinical features of LOPD. With the advent of definitive therapy for Pompe disease, it is important to be aware of these findings and use them to develop methods for tracking therapeutic response. Highlights ► Autopsy studies are important in understanding the systemic effects of LOPD. ► Multiple organ involvement is evident in LOPD, correlating with clinical findings. ► Histologic quantification of glycogen may be a useful biomarker of ERT response

    Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors

    No full text
    GATA-family transcription factors are critical to the development of diverse tissues. In particular, GATA-4 has been implicated in formation of the vertebrate heart. As the mouse Gata-4 knock-out is early embryonic lethal because of a defect in ventral morphogenesis, the in vivo function of this factor in heart development remains unresolved. To search for a requirement for Gata4 in heart development, we created mice harboring a single amino acid replacement in GATA-4 that impairs its physical interaction with its presumptive cardiac cofactor FOG-2. Gata4(ki/ki) mice die just after embryonic day (E) 12.5 exhibiting features in common with Fog2(−/−) embryos as well as additional semilunar cardiac valve defects and a double-outlet right ventricle. These findings establish an intrinsic requirement for GATA-4 in heart development. We also infer that GATA-4 function is dependent on interaction with FOG-2 and, very likely, an additional FOG protein for distinct aspects of heart formation

    Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy

    Get PDF
    Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy.BackgroundFabry disease, a lysosomal storage disease caused by deficient lysosomal α-galactosidase A activity, is characterized by globotriaosylceramide (GL-3) accumulation in multiple cell types, particularly the vasculature, leading to end organ failure. Accumulation in the kidney is responsible for progressive decline in renal function in male patients with the classical phenotype, resulting in renal failure in their third to fifth decades of life. With the advent of recombinant protein synthesis technology, enzyme replacement therapy has become a viable alternative to dialysis or renal transplantation, previously the only available treatment options for end-stage renal disease.MethodsThe pre- and post-treatment renal biopsies were analyzed from fifty-eight Fabry patients enrolled in a Phase 3 double-blind, randomized, placebo-controlled trial followed by a six-month open label extension study of the recombinant human enzyme, α-galactosidase A (r-hαGalA), administered IV at 1mg/kg biweekly. The purpose of this investigation was to detail the pathologic changes in glycosphingolipid distribution and the pattern of post-treatment clearance in the kidney.ResultsBaseline evaluations revealed GL-3 accumulations in nearly all renal cell types including vascular endothelial cells, vascular smooth muscle cells, mesangial cells and interstitial cells, with particularly dense accumulations in podocytes and distal tubular epithelial cells. After 11 months of r-hαGalA treatment there was complete clearance of glycolipid from the endothelium of all vasculature as well as from the mesangial cells of the glomerulus and interstitial cells of the cortex. Moderate clearance was noted from the smooth muscle cells of arterioles and small arteries. Podocytes and distal tubular epithelium also demonstrated evidence for decreased GL-3, although this clearance was more limited than that observed in other cell types. No evidence of immune complex disease was found by immunofluorescence despite circulating anti-r-hαGalA IgG antibodies.ConclusionsThese findings indicate a striking reversal of renal glycosphingolipid accumulation in the vasculature and in other renal cell types, and suggest that long-term treatment with r-hαGalA may halt the progression of pathology and prevent renal failure in patients with Fabry disease

    Pompe Disease in Infants: Improving the Prognosis by Newborn Screening and Early Treatment

    No full text
    OBJECTIVE: Pompe disease causes progressive, debilitating, and often life -threatening musculoskeletal, respiratory, and cardiac symptoms. Favorable outcomes with early intravenous enzyme-replacement therapy and alglucosidase alfa have been reported, but early clinical diagnosis before the development of severe symptoms has rarely been possible in infants. METHODS: We recently conducted a newborn screening pilot program in Taiwan to improve the early detection of Pompe disease. Six of 206 088 newborns screened tested positive and were treated for Pompe disease. Five had the rapidly progressive form of Pompe disease, characterized by cardiac and motor involvement, and were treated soon after diagnosis. The sixth patient was started on treatment at 14 months of age because of progressive muscle weakness. Outcomes were compared with treated patients whose disease was diagnosed clinically and with untreated historical control subjects. RESULTS: At the time of this report, patients had been treated for 14 to 32 months. The 5 infants who had early cardiac involvement demonstrated normalization of cardiac size and muscle pathology with normal physical growth and age-appropriate gains in motor development. The infant without cardiac involvement also achieved normal motor development with treatment. Survival in patients who had newborn screening was significantly improved compared with those in the untreated reference cohort (P = .001). Survival in the treated clinical comparators was reduced but not statistically different from that in the newborn screening group (P = .48). CONCLUSIONS: Results from this study indicate that early treatment can benefit infants with Pompe disease and highlight the advantages of early diagnosis, which can be achieved by newborn screening

    A randomized, placebo-controlled clinical trial evaluating olipudase alfa enzyme replacement therapy for chronic acid sphingomyelinase deficiency (ASMD) in adults: One-year results

    No full text
    Purpose: This trial aimed to assess the efficacy and safety of olipudase alfa enzyme replacement therapy for non–central nervous system manifestations of acid sphingomyelinase deficiency (ASMD) in adults. Methods: A phase 2/3, 52 week, international, double-blind, placebo-controlled trial (ASCEND; NCT02004691/EudraCT 2015-000371-26) enrolled 36 adults with ASMD randomized 1:1 to receive olipudase alfa or placebo intravenously every 2 weeks with intrapatient dose escalation to 3 mg/kg. Primary efficacy endpoints were percent change from baseline to week 52 in percent predicted diffusing capacity of the lung for carbon monoxide and spleen volume (combined with splenomegaly-related score in the United States). Other outcomes included liver volume/function/sphingomyelin content, pulmonary imaging/function, platelet levels, lipid profiles, and pharmacodynamics. Results: Least square mean percent change from baseline to week 52 favored olipudase alfa over placebo for percent predicted diffusing capacity of the lung for carbon monoxide (22% vs 3.0% increases, P =.0004), spleen volume (39% decrease vs 0.5% increase, P <.0001), and liver volume (28% vs 1.5% decreases, P <.0001). Splenomegaly-related score decreased in both groups (P =.64). Other clinical outcomes improved in the olipudase alfa group compared with the placebo group. There were no treatment-related serious adverse events or adverse event–related discontinuations. Most adverse events were mild. Conclusion: Olipudase alfa was well tolerated and associated with significant and comprehensive improvements in disease pathology and clinically relevant endpoints compared with placebo in adults with ASMD
    corecore