643 research outputs found

    Fence methods for mixed model selection

    Full text link
    Many model search strategies involve trading off model fit with model complexity in a penalized goodness of fit measure. Asymptotic properties for these types of procedures in settings like linear regression and ARMA time series have been studied, but these do not naturally extend to nonstandard situations such as mixed effects models, where simple definition of the sample size is not meaningful. This paper introduces a new class of strategies, known as fence methods, for mixed model selection, which includes linear and generalized linear mixed models. The idea involves a procedure to isolate a subgroup of what are known as correct models (of which the optimal model is a member). This is accomplished by constructing a statistical fence, or barrier, to carefully eliminate incorrect models. Once the fence is constructed, the optimal model is selected from among those within the fence according to a criterion which can be made flexible. In addition, we propose two variations of the fence. The first is a stepwise procedure to handle situations of many predictors; the second is an adaptive approach for choosing a tuning constant. We give sufficient conditions for consistency of fence and its variations, a desirable property for a good model selection procedure. The methods are illustrated through simulation studies and real data analysis.Comment: Published in at http://dx.doi.org/10.1214/07-AOS517 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Two extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey

    Full text link
    We present spectroscopic observations with the 3.6m ESO telescope of two emission-line galaxies, J2104-0035 and J0113+0052, selected from the Data Release 4 (DR4) of the Sloan Digital Sky Survey (SDSS). From our data we determine the oxygen abundance of these systems to be respectively 12+logO/H = 7.26+/-0.03 and 7.17+/-0.09, making them the two most metal-deficient galaxies found thus far in the SDSS and placing them among the five most metal-deficient emission-line galaxies ever discovered. Their oxygen abundances are close to those of the two most metal-deficient emission-line galaxies known, SBS0335-052W with 12+logO/H = 7.12+/-0.03 and I Zw 18 with 12+logO/H = 7.17+/-0.01.Comment: 5 pages, 3 figures. Accepted for publication in Astronomy and Astrophysic

    The HI content of extremely metal-deficient blue compact dwarf galaxies

    Get PDF
    We have obtained new HI observations with the 100m Green Bank Telescope (GBT) for a sample of 29 extremely metal-deficient star-forming Blue Compact Dwarf (BCD) galaxies, selected from the Sloan Digital Sky Survey spectral data base to be extremely metal-deficient (12+logO/H<7.6). Neutral hydrogen was detected in 28 galaxies, a 97% detection rate. Combining the HI data with SDSS optical spectra for the BCD sample and adding complementary galaxy samples from the literature to extend the metallicity and mass ranges, we have studied how the HI content of a galaxy varies with various global galaxian properties. There is a clear trend of increasing gas mass fraction with decreasing metallicity, mass and luminosity. We obtain the relation M(HI)/L(g)~L(g)^{-0.3}, in agreement with previous studies based on samples with a smaller luminosity range. The median gas mass fraction f(gas) for the GBT sample is equal to 0.94 while the mean gas mass fraction is 0.90+/-0.15, with a lower limit of ~0.65. The HI depletion time is independent of metallicity, with a large scatter around the median value of 3.4 Gyr. The ratio of the baryonic mass to the dynamical mass of the metal-deficient BCDs varies from 0.05 to 0.80, with a median value of ~0.2. About 65% of the BCDs in our sample have an effective yield larger than the true yield, implying that the neutral gas envelope in BCDs is more metal-deficient by a factor of 1.5-20, as compared to the ionized gas.Comment: 21 pages, 13 figures, accepted for publication in MNRA

    SBS 0335-052W: The Lowest-Metallicity Star-Forming Galaxy Known

    Full text link
    We present 4-meter Kitt Peak telescope and 6.5-meter MMT spectrophotometry of the extremely low-metallicity galaxy SBS 0335-052W, the western companion of the blue compact dwarf galaxy SBS 0335-052E. These observations have been combined with published 10-meter Keck data to derive for the brightest region of SBS 0335-052W an oxygen abundance 12+logO/H=7.12+/-0.03. This makes SBS 0335-052W the lowest metallicity star-forming galaxy known in the local universe. Using a Monte Carlo technique, we fit the spectral energy distribution of SBS 0335-052W to derive the age of the oldest stars contributing to its optical light. We find that star formation in SBS 0335-052W began less than 500 Myr ago, making it a likely nearby young dwarf galaxy.Comment: 13 pages, 3 figures, accepted for publication in the Astrophysical Journa

    FUSE observations of the HI interstellar gas of IZw18

    Full text link
    We present the analysis of FUSE observations of the metal-deficient dwarf galaxy IZw18. We measured column densities of HI, NI, OI, ArI, SiII, and FeII. The OI/HI ratio (log(OI/HI)=-4.7^{+0.8}_{-0.6}) is consistent with the O/H ratio observed in the HII regions (all uncertainties are 2-sigma). If the oxygen is depleted in the HI region compared to the HII regions, the depletion is at most 0.5dex. This is also consistent with the log(O/H) ratios ~-5 measured with FUSE in the HI regions of other blue compact dwarf galaxies. With log(NI/OI)=-2.4^{+0.6}_{-0.8}, the measured NI/OI ratio is lower than expected for primary nitrogen. The determination of the NII column density is needed to discriminate between a large ionization of NI or a possible nitrogen deficiency. The neutral argon is also apparently underabundant, indicating that ionization into ArII is likely important. The column densities of the other alpha-chain elements SiII and ArI favor the lower edge of the permitted range of OI column density, log(N(OI))~16.3.Comment: Accepted for publication in A&

    Deep Hubble Space Telescope/ACS Observations of I Zw 18: a Young Galaxy in Formation

    Full text link
    We present V and I photometry of the resolved stars in the most metal-deficient blue compact dwarf galaxy known, I Zw 18 (Zsun/50), using Hubble Space Telescope/Advanced Camera for Surveys (ACS) images, the deepest ones ever obtained for this galaxy. The resulting I vs. V-I color-magnitude diagram (CMD) reaches limiting magnitudes V=I=29 mag. It reveals a young stellar population of blue main-sequence (MS) stars (age <30 Myr) and blue and red supergiants (10 Myr<age<100 Myr), but also an older evolved population of asymptotic giant branch (AGB) stars (100 Myr<age<500 Myr). We derive a distance to I Zw 18 in the range 12.6 Mpc - 15 Mpc from the brightness of its AGB stars, with preferred values in the higher range. The red giant branch (RGB) stars are conspicuous by their absence, although, for a distance of I Zw 18 <15 Mpc, our imaging data go ~ 1-2 mag below the tip of the RGB. Thus, the most evolved stars in the galaxy are not older than 500 Myr and I Zw 18 is a bona fide young galaxy. Several star formation episodes can be inferred from the CMDs of the main body and the C component. There have been respectively three and two episodes in these two parts, separated by periods of ~ 100-200 Myr. In the main body, the younger MS and massive post-MS stars are distributed over a larger area than the older AGB stars, suggesting that I Zw 18 is still forming from the inside out. In the C component, different star formation episodes are spatially distinct, with stellar population ages decreasing from the northwest to the southeast, also suggesting the ongoing build-up of a young galaxy.Comment: 29 pages, 13 Postscript figures, accepted for publication in the Astrophysical Journa

    Intense CIII] 1907,1909 emission from a strong Lyman continuum emitting galaxy

    Full text link
    We have obtained the first complete ultraviolet (UV) spectrum of a strong Lyman continuum(LyC) emitter at low redshift -- the compact, low-metallicity, star-forming galaxy J1154+2443 -- with a Lyman continuum escape fraction of 46% discovered recently. The Space Telescope Imaging Spectrograph spectrum shows strong Lya and CIII] 1909 emission, as well as OIII] 1666. Our observations show that strong LyC emitters can have UV emission lines with a high equivalent width (e.g. EW(CIII])=11.7±2.9A˚=11.7 \pm 2.9 \AA rest-frame), although their equivalent widths should be reduced due to the loss of ionizing photons. The intrinsic ionizing photon production efficiency of J1154+2443 is high, log⁥(Οion0)=25.56\log(\xi_{\rm ion}^0)=25.56 erg−1^{-1} Hz, comparable to that of other recently discovered z∌0.3−0.4z \sim 0.3-0.4 LyC emitters. Combining our measurements and earlier determinations from the literature, we find a trend of increasing Οion0\xi_{\rm ion}^0 with increasing CIII] 1909 equivalent width, which can be understood by a combination of decreasing stellar population age and metallicity. Simple ionization and density-bounded photoionization models can explain the main observational features including the UV spectrum of J1154+2443.Comment: 5 pages, 4 figures. Accepted for publication in A&A Letter
    • 

    corecore