351 research outputs found

    Evaluating Consumer Sensory and Composition Attributes of Arkansas-Grown Fresh-Market Blackberries

    Get PDF
    Blackberries are grown worldwide for commercial fresh markets. Three Arkansas-grown fresh-market blackberry genotypes (‘Natchez’, ‘Ouachita’, and A-2418) were evaluated for consumer sensory and compositional attributes at the University of Arkansas Food Science Department, Fayetteville. The compositional attributes of the blackberries were within an acceptable range for commercial markets (soluble solids=8.20-11.90%, pH=2.79-3.18, titratable acidity=1.09-1.32%). In terms of soluble solids to titratable acidity ratio, ‘Ouachita’ (10.92) had the highest ratio, followed by ‘Natchez’ (8.93) and A-2418 (6.25). A consumer sensory panel (n=80) evaluated fresh-market blackberry attributes using a 9-point hedonic scale for overall impression, overall flavor, sweetness, and sourness and a 5-point Just-about-Right (JAR) scale for sweetness and sourness. The participants also ranked the blackberries in order of overall liking from most to least liked. For overall impression, overall flavor, and sweetness, ‘Natchez’ scored higher than ‘Ouachita’ and A-2418, but the panelists did not detect differences in sourness. In terms of JAR for sweetness, 64% of consumers scored ‘Natchez’ JAR, followed by ‘Ouachita’ (39%) and A-2418 (34%). Whereas, 42% percent found A-2418 “Too Sour”, followed by ‘Ouachita (33%) and ‘Natchez’ (25%). In terms of ranking the blackberries, ‘Natchez’ was the most liked blackberry followed by ‘Ouachita’ and A-2418. When looking only at blackberries ranked first, 53% of consumers ranked ‘Natchez’ as their most liked berry, compared to A-2418 (26%) and ‘Ouachita’ (21%). The results from this research suggested that fresh-market blackberries with medium-level sweetness to sourness ratios were preferred though more consumers than expected preferred the blackberries with the more extreme ratios

    Detecting Topology in a Nearly Flat Spherical Universe

    Get PDF
    When the density parameter is close to unity, the universe has a large curvature radius independently of its being hyperbolic, flat, or spherical. Whatever the curvature, the universe may have either a simply connected or a multiply connected topology. In the flat case, the topology scale is arbitrary, and there is no a priori reason for this scale to be of the same order as the size of the observable universe. In the hyperbolic case any nontrivial topology would almost surely be on a length scale too large to detect. In the spherical case, by contrast, the topology could easily occur on a detectable scale. The present paper shows how, in the spherical case, the assumption of a nearly flat universe simplifies the algorithms for detecting a multiply connected topology, but also reduces the amount of topology that can be seen. This is of primary importance for the upcoming cosmic microwave background data analysis. This article shows that for spherical spaces one may restrict the search to diametrically opposite pairs of circles in the circles-in-the-sky method and still detect the cyclic factor in the standard factorization of the holonomy group. This vastly decreases the algorithm's run time. If the search is widened to include pairs of candidate circles whose centers are almost opposite and whose relative twist varies slightly, then the cyclic factor along with a cyclic subgroup of the general factor may also be detected. Unfortunately the full holonomy group is, in general, unobservable in a nearly flat spherical universe, and so a full 6-parameter search is unnecessary. Crystallographic methods could also potentially detect the cyclic factor and a cyclic subgroup of the general factor, but nothing else.Comment: 16 pages, 7 figure

    A Tonnetz Model for pentachords

    Get PDF
    This article deals with the construction of surfaces that are suitable for representing pentachords or 5-pitch segments that are in the same T/IT/I class. It is a generalization of the well known \"Ottingen-Riemann torus for triads of neo-Riemannian theories. Two pentachords are near if they differ by a particular set of contextual inversions and the whole contextual group of inversions produces a Tiling (Tessellation) by pentagons on the surfaces. A description of the surfaces as coverings of a particular Tiling is given in the twelve-tone enharmonic scale case.Comment: 27 pages, 12 figure

    Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5) Crystals

    Get PDF
    Metal Organic Frameworks (MOFs) represent a class of nanoporous crystalline materials with far reaching potential in gas storage, catalysis, and medical devices. We investigated the effects of synthesis process parameters on production of MOF-5 from terephthalic acid and zinc nitrate in diethylformamide. Under favorable synthesis conditions, we systematically mapped a solid formation diagram in terms of time and temperature for both stirred and unstirred conditions. The synthesis of MOF-5 has been previously reported as a straightforward reaction progressing from precursor compounds in solution directly to the final MOF-5 solid phase product. However, we show that the solid phase formation process is far more complex, invariably transferring through metastable intermediate crystalline phases before the final MOF-5 phase is reached, providing new insights into the formation pathways of MOFs. We also identify process parameters suitable for scale-up and continuous manufacturing of high purity MOF-5

    Spherical Universe topology and the Casimir effect

    Full text link
    The mode problem on the factored 3--sphere is applied to field theory calculations for massless fields of spin 0, 1/2 and 1. The degeneracies on the factors, including lens spaces, are neatly derived in a geometric fashion. Vacuum energies are expressed in terms of the polyhedral degrees and equivalent expressions given using the cyclic decomposition of the covering group. Scalar functional determinants are calculated and the spectral asymmetry function treated by the same approach with explicit forms on one-sided lens spaces.Comment: 33 pages, 1 figure. Typos corrected and one reference adde

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Combinatorial 3-manifolds with transitive cyclic symmetry

    Full text link
    In this article we give combinatorial criteria to decide whether a transitive cyclic combinatorial d-manifold can be generalized to an infinite family of such complexes, together with an explicit construction in the case that such a family exists. In addition, we substantially extend the classification of combinatorial 3-manifolds with transitive cyclic symmetry up to 22 vertices. Finally, a combination of these results is used to describe new infinite families of transitive cyclic combinatorial manifolds and in particular a family of neighborly combinatorial lens spaces of infinitely many distinct topological types.Comment: 24 pages, 5 figures. Journal-ref: Discrete and Computational Geometry, 51(2):394-426, 201

    A multilevel study of the determinants of area-level inequalities in colorectal cancer survival

    Get PDF
    Background: In Australia, associations between geographic remoteness, socioeconomic disadvantage, and colorectal cancer (CRC) survival show that survival rates are lowest among residents of geographically remote regions and those living in disadvantaged areas. At present we know very little about the reasons for these inequalities, hence our capacity to intervene to reduce the inequalities is limited. Methods/Design: This study, the first of its type in Australia, examines the association between CRC survival and key area- and individual-level factors. Specifically, we will use a multilevel framework to investigate the possible determinants of area- and individual-level inequalities in CRC survival and quantify the relative contribution of geographic remoteness, socioeconomic and demographic factors, disease stage, and access to diagnostic and treatment services, to these inequalities. The multilevel analysis will be based on survival data relating to people diagnosed with CRC in Queensland between 1996 and 2005 (n = 22,723) from the Queensland Cancer Registry (QCR), area-level data from other data custodians such as the Australian Bureau of Statistics, and individual-level data from the QCR (including extracting stage from pathology records) and Queensland Hospitals. For a subset of this period (2003 and 2004) we will utilise more detailed, individual-level data (n = 1,966) covering a greater range of risk factors from a concurrent research study. Geo-coding and spatial technology will be used to calculate road travel distances from patients’ residence to treatment centres. The analyses will be conducted using a multilevel Cox proportional hazards model with Level 1 comprising individual-level factors (e.g. occupation) and level 2 area level indicators of remoteness and area socioeconomic disadvantage. Discussion: This study focuses on the health inequalities for rural and disadvantaged populations that have often been documented but poorly understood, hence limiting our capacity to intervene. This study utilises and develops emerging statistical and spatial technologies that can then be applied to other cancers and health outcomes. The findings of this study will have direct implications for the targeting and resourcing of cancer control programs designed to reduce the burden of colorectal cancer, and for the provision of diagnostic and treatment services
    • 

    corecore