1,421 research outputs found
Gravitational Waves from Fallback Accretion onto Neutron Stars
Massive stars generally end their lives as neutron stars (NSs) or black holes
(BHs), with NS formation typically occurring at the low mass end and collapse
to a BH more likely at the high mass end. In an intermediate regime, with a
mass range that depends on the uncertain details of rotation and mass loss
during the star's life, a NS is initially formed which then experiences
fallback accretion and collapse to a BH. The electromagnetic consequence of
such an event is not clear. Depending on the progenitor's structure,
possibilities range from a long gamma-ray burst to a Type II supernova (that
may or may not be jet-powered) to a collapse with a weak electromagnetic
signature. Gravitational waves (GWs) provide the exciting opportunity to peer
through the envelope of a dying massive star and directly probe what is
occurring inside. We explore whether fallback onto young NSs can be detected by
ground-based interferometers. When the incoming material has sufficient angular
momentum to form a disk, the accretion spins up the NS sufficiently to produce
non-axisymmetric instabilities and gravitational radiation at frequencies of
~700-2400 Hz for ~30-3000 s until collapse to a BH occurs. Using a realistic
excess cross-power search algorithm, we show that such events are detectable by
Advanced LIGO out to ~17 Mpc. From the rate of nearby core-collapse supernovae,
we estimate that there will be ~1-2 events each year that are worth checking
for fallback GWs. The observation of these unique GW signatures coincident with
electromagnetic detections would identify the transient events that are
associated with this channel of BH formation, while providing information about
the protoneutron star progenitor.Comment: 11 pages, 4 figures, submitted for publication in The Astrophysical
Journa
Brain edema : a valid endpoint for measuring hepatic encephalopathy?
Hepatic encephalopathy (HE) is a major complication of liver failure/disease which frequently develops during the progression of end-stage liver disease. This metabolic neuropsychiatric syndrome involves a spectrum of symptoms, including cognition impairment, attention deficits and motor dysfunction which eventually can progress to coma and death. Pathologically, HE is characterized by swelling of the astrocytes which consequently leads to brain edema, a common feature found in patients with acute liver failure (ALF) as well as in cirrhotic patients suffering from HE. The pathogenic factors involved in the onset of astrocyte swelling and brain edema in HE are unresolved. However, the role of astrocyte swelling/brain edema in the development of HE remains ambiguous and therefore measuring brain edema as an endpoint to evaluate HE is questioned. The following review will determine the effect of astrocyte swelling and brain edema on neurological function, discuss the various possible techniques to measure brain edema and lastly to propose a number of neurobehavioral tests to evaluate HE
Treatment of calibration uncertainty in multi-baseline cross-correlation searches for gravitational waves
Uncertainty in the calibration of gravitational wave (GW) detector data leads to systematic errors, which must be accounted for in setting limits on the strength of GW signals. When cross-correlation measurements are made using data from a pair of instruments, as in searches for a stochastic GW background, the calibration uncertainties of the individual instruments can be combined into an uncertainty associated with the pair. With the advent of multi-baseline GW observation (e.g., networks consisting of multiple detectors such as the LIGO observatories and Virgo), a more sophisticated treatment is called for. We have described how the correlations between calibration factors associated with different pairs can be taken into account by marginalizing over the uncertainty associated with each instrument
Application of WGS data for O-specific antigen analysis and <i>in silico </i>serotyping of <i>Pseudomonas aeruginosa </i>isolates
Accurate typing methods are required for efficient infection control. The emergence of whole-genome sequencing (WGS) technologies has enabled the development of genome-based methods applicable for routine typing and surveillance of bacterial pathogens. In this study, we developed the Pseudomonas aeruginosa serotyper (PAst) program, which enabled in silico serotyping of P. aeruginosa isolates using WGS data. PAst has been made publically available as a web service and aptly facilitates high-throughput serotyping analysis. The program overcomes critical issues such as the loss of in vitro typeability often associated with P. aeruginosa isolates from chronic infections and quickly determines the serogroup of an isolate based on the sequence of the O-specific antigen (OSA) gene cluster. Here, PAst analysis of 1,649 genomes resulted in successful serogroup assignments in 99.27% of the cases. This frequency is rarely achievable by conventional serotyping methods. The limited number of nontypeable isolates found using PAst was the result of either a complete absence of OSA genes in the genomes or the artifact of genomic misassembly. With PAst, P. aeruginosa serotype data can be obtained from WGS information alone. PAst is a highly efficient alternative to conventional serotyping methods in relation to outbreak surveillance of serotype O12 and other high-risk clones, while maintaining backward compatibility to historical serotype data
Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers
Searches for gravitational waves (GWs) traditionally focus on persistent sources (e.g., pulsars or the stochastic background) or on transients sources (e.g., compact binary inspirals or core-collapse supernovae), which last for time scales of milliseconds to seconds. We explore the possibility of long GW transients with unknown waveforms lasting from many seconds to weeks. We propose a novel analysis technique to bridge the gap between short O(s) “burst” analyses and persistent stochastic analyses. Our technique utilizes frequency-time maps of GW strain cross power between two spatially separated terrestrial GW detectors. The application of our cross power statistic to searches for GW transients is framed as a pattern recognition problem, and we discuss several pattern-recognition techniques. We demonstrate these techniques by recovering simulated GW signals in simulated detector noise. We also recover environmental noise artifacts, thereby demonstrating a novel technique for the identification of such artifacts in GW interferometers. We compare the efficiency of this framework to other techniques such as matched filtering
Black Hole Genealogy: Identifying Hierarchical Mergers with Gravitational Waves
In dense stellar environments, the merger products of binary black hole mergers may undergo additional mergers. These hierarchical mergers are naturally expected to have higher masses than the first generation of black holes made from stars. The components of hierarchical mergers are expected to have significant characteristic spins, imprinted by the orbital angular momentum of the previous mergers. However, since the population properties of first-generation black holes are uncertain, it is difficult to know if any given merger is first-generation or hierarchical. We use observations of gravitational waves to reconstruct the binary black hole mass and spin spectrum of a population including the possibility of hierarchical mergers. We employ a phenomenological model that captures the properties of merging binary black holes from simulations of globular clusters. Inspired by recent work on the formation of low-spin black holes, we include a zero-spin subpopulation. We analyze binary black holes from LIGO and Virgo's first two observing runs, and find that this catalog is consistent with having no hierarchical mergers. We find that the most massive system in this catalog, GW170729, is mostly likely a first-generation merger, having a 4% probability of being a hierarchical merger assuming a 5 × 10⁵ M_⊙ globular cluster mass. Using our model, we find that 99% of first-generation black holes in coalescing binaries have masses below 44 M_⊙, and the fraction of binaries with near-zero component spins is less than 0.16 (90% probability). Upcoming observations will determine if hierarchical mergers are a common source of gravitational waves
A Bacteriophage-Acquired O-Antigen Polymerase (Wzy<sub>β</sub>) from <i>P. aeruginosa </i>Serotype O16 Performs a Varied Mechanism Compared to Its Cognate Wzy<sub>α</sub>
Pseudomonas aeruginosa is a Gram-negative bacterium that produces highly varied lipopolysaccharide (LPS) structures. The O antigen (O-Ag) in the LPS is synthesized through the Wzx/Wzy-dependent pathway where lipid-linked O-Ag repeats are polymerized by Wzy. Horizontal-gene transfer has been associated with O-Ag diversity. The O-Ag present on the surface of serotypes O5 and O16, differ in the intra-molecular bonds, α and β, respectively; the latter arose from the action of three genes in a seroconverting unit acquired from bacteriophage D3, including a β-polymerase (Wzyβ). To further our understanding of O-polymerases, the inner membrane (IM) topology of Wzyβ was determined using a dual phoA-lacZα reporter system wherein random 3’ gene truncations were localized to specific loci with respect to the IM by normalized reporter activities as determined through the ratio of alkaline phosphate activity to β-galactosidase activity. The topology of Wzyβ developed through this approach was shown to contain two predominant periplasmic loops, PL3 (containing an RX10G motif) and PL4 (having an O-Ag ligase superfamily motif), associated with inverting glycosyltransferase reaction. Through site-directed mutagenesis and complementation assays, residues Arg254, Arg270, Arg272 and His300 were found to be essential for Wzyβ function. Additionally, like-charge substitutions, R254K and R270K, could not complement the wzyβ knockout, highlighting the essential guanidium side group of Arg residues. The O-Ag ligase domain is conserved among heterologous Wzy proteins that produce β-linked O-Ag repeat units. Taking advantage of the recently obtained whole-genome sequence of serotype O16 a candidate promoter was identified. Wzyβ under its native promoter was integrated in the PAO1 genome, which resulted in simultaneous production of α- and β-linked O-Ag. These observations established that members of Wzy-like family consistently exhibit a dual-periplasmic loops topology, and identifies motifs that are plausible to be involved in enzymatic activities. Based on these results, the phage-derived Wzyβ utilizes a different reaction mechanism in the P. aeruginosa host to avoid self-inhibition during serotype conversion
- …