307 research outputs found

    Spectral weight transfer in a disorder-broadened Landau level

    Full text link
    In the absence of disorder, the degeneracy of a Landau level (LL) is N=BA/ϕ0N=BA/\phi_0, where BB is the magnetic field, AA is the area of the sample and ϕ0=h/e\phi_0=h/e is the magnetic flux quantum. With disorder, localized states appear at the top and bottom of the broadened LL, while states in the center of the LL (the critical region) remain delocalized. This well-known phenomenology is sufficient to explain most aspects of the Integer Quantum Hall Effect (IQHE) [1]. One unnoticed issue is where the new states appear as the magnetic field is increased. Here we demonstrate that they appear predominantly inside the critical region. This leads to a certain ``spectral ordering'' of the localized states that explains the stripes observed in measurements of the local inverse compressibility [2-3], of two-terminal conductance [4], and of Hall and longitudinal resistances [5] without invoking interactions as done in previous work [6-8].Comment: 5 pages 3 figure

    Experimental Measurement of the Berry Curvature from Anomalous Transport

    Full text link
    Geometrical properties of energy bands underlie fascinating phenomena in a wide-range of systems, including solid-state materials, ultracold gases and photonics. Most famously, local geometrical characteristics like the Berry curvature can be related to global topological invariants such as those classifying quantum Hall states or topological insulators. Regardless of the band topology, however, any non-zero Berry curvature can have important consequences, such as in the semi-classical evolution of a wave packet. Here, we experimentally demonstrate for the first time that wave packet dynamics can be used to directly map out the Berry curvature. To this end, we use optical pulses in two coupled fibre loops to study the discrete time-evolution of a wave packet in a 1D geometrical "charge" pump, where the Berry curvature leads to an anomalous displacement of the wave packet under pumping. This is both the first direct observation of Berry curvature effects in an optical system, and, more generally, the proof-of-principle demonstration that semi-classical dynamics can serve as a high-resolution tool for mapping out geometrical properties

    Rectified voltage induced by a microwave field in a confined two-dimensional electron gas with a mesoscopic static vortex

    Full text link
    We investigate the effect of a microwave field on a confined two dimensional electron gas which contains an insulating region comparable to the Fermi wavelength. The insulating region causes the electron wave function to vanish in that region. We describe the insulating region as a static vortex. The vortex carries a flux which is determined by vanishing of the charge density of the electronic fluid due to the insulating region. The sign of the vorticity for a hole is opposite to the vorticity for adding additional electrons. The vorticity gives rise to non-commuting kinetic momenta. The two dimensional electron gas is described as fluid with a density which obeys the Fermi-Dirac statistics. The presence of the confinement potential gives rise to vanishing kinetic momenta in the vicinity of the classical turning points. As a result, the Cartesian coordinate do not commute and gives rise to a Hall current which in the presence of a modified Fermi-Surface caused by the microwave field results in a rectified voltage. Using a Bosonized formulation of the two dimensional gas in the presence of insulating regions allows us to compute the rectified current. The proposed theory may explain the experimental results recently reported by J. Zhang et al.Comment: 14 pages, 2 figure

    Exploring 4D Quantum Hall Physics with a 2D Topological Charge Pump

    Get PDF
    The discovery of topological states of matter has profoundly augmented our understanding of phase transitions in physical systems. Instead of local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example thereof is the two-dimensional integer quantum Hall effect. It is characterized by the first Chern number which manifests in the quantized Hall response induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional systems leads to the appearance of a novel non-linear Hall response that is quantized as well, but described by a 4D topological invariant - the second Chern number. Here, we report on the first observation of a bulk response with intrinsic 4D topology and the measurement of the associated second Chern number. By implementing a 2D topological charge pump with ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small atom cloud as a local probe, we fully characterize the non-linear response of the system by in-situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probe higher-dimensional quantum Hall systems, where new topological phases with exotic excitations are predicted

    Fractional quantum Hall effect in the absence of Landau levels

    Full text link
    It has been well-known that topological phenomena with fractional excitations, i.e., the fractional quantum Hall effect (FQHE) \cite{Tsui1982} will emerge when electrons move in Landau levels. In this letter, we report the discovery of the FQHE in the absence of Landau levels in an interacting fermion model. The non-interacting part of our Hamiltonian is the recently proposed topologically nontrivial flat band model on the checkerboard lattice \cite{sun}. In the presence of nearest-neighboring repulsion (UU), we find that at 1/3 filling, the Fermi-liquid state is unstable towards FQHE. At 1/5 filling, however, a next-nearest-neighboring repulsion is needed for the occurrence of the 1/5 FQHE when UU is not too strong. We demonstrate the characteristic features of these novel states and determine the phase diagram correspondingly.Comment: 6 pages and 4 figure

    Global Minimum Depth In Edwards-Anderson Model

    Full text link
    In the literature the most frequently cited data are quite contradictory, and there is no consensus on the global minimum value of 2D Edwards-Anderson (2D EA) Ising model. By means of computer simulations, with the help of exact polynomial Schraudolph-Kamenetsky algorithm, we examined the global minimum depth in 2D EA-type models. We found a dependence of the global minimum depth on the dimension of the problem N and obtained its asymptotic value in the limit NN\to\infty. We believe these evaluations can be further used for examining the behavior of 2D Bayesian models often used in machine learning and image processing.Comment: 10 pages, 4 figures, 2 tables, submitted to conference on Engineering Applications of Neural Networks (EANN 2019

    Quantum Hall Effect in a Holographic Model

    Full text link
    We consider a holographic description of a system of strongly coupled fermions in 2+1 dimensions based on a D7-brane probe in the background of D3-branes, and construct stable embeddings by turning on worldvolume fluxes. We study the system at finite temperature and charge density, and in the presence of a background magnetic field. We show that Minkowski-like embeddings that terminate above the horizon describe a family of quantum Hall states with filling fractions that are parameterized by a single discrete parameter. The quantization of the Hall conductivity is a direct consequence of the topological quantization of the fluxes. When the magnetic field is varied relative to the charge density away from these discrete filling fractions, the embeddings deform continuously into black-hole-like embeddings that enter the horizon and that describe metallic states. We also study the thermodynamics of this system and show that there is a first order phase transition at a critical temperature from the quantum Hall state to the metallic state.Comment: v2: 27 pages, 12 figures. There is a major revision in the quantitative analysis. The qualitative results and conclusions are unchanged, with one exception: we show that the quantum Hall state embeddings, which exist for discrete values of the filling fraction, deform continuously into metallic state embeddings away from these filling fraction

    Statistical Signatures of Photon Localization

    Full text link
    The realization that electron localization in disordered systems (Anderson localization) is ultimately a wave phenomenon has led to the suggestion that photons could be similarly localized by disorder. This conjecture attracted wide interest because the differences between photons and electrons - in their interactions, spin statistics, and methods of injection and detection - may open a new realm of optical and microwave phenomena, and allow a detailed study of the Anderson localization transition undisturbed by the Coulomb interaction. To date, claims of three-dimensional photon localization have been based on observations of the exponential decay of the electromagnetic wave as it propagates through the disordered medium. But these reports have come under close scrutiny because of the possibility that the decay observed may be due to residual absorption, and because absorption itself may suppress localization. Here we show that the extent of photon localization can be determined by a different approach - measurement of the relative size of fluctuations of certain transmission quantities. The variance of relative fluctuations accurately reflects the extent of localization, even in the presence of absorption. Using this approach, we demonstrate photon localization in both weakly and strongly scattering quasi-one-dimensional dielectric samples and in periodic metallic wire meshes containing metallic scatterers, while ruling it out in three-dimensional mixtures of aluminum spheres.Comment: 5 pages, including 4 figure

    The space group classification of topological band insulators

    Full text link
    Topological band insulators (TBIs) are bulk insulating materials which feature topologically protected metallic states on their boundary. The existing classification departs from time-reversal symmetry, but the role of the crystal lattice symmetries in the physics of these topological states remained elusive. Here we provide the classification of TBIs protected not only by time-reversal, but also by crystalline symmetries. We find three broad classes of topological states: (a) Gamma-states robust against general time-reversal invariant perturbations; (b) Translationally-active states protected from elastic scattering, but susceptible to topological crystalline disorder; (c) Valley topological insulators sensitive to the effects of non-topological and crystalline disorder. These three classes give rise to 18 different two-dimensional, and, at least 70 three-dimensional TBIs, opening up a route for the systematic search for new types of TBIs.Comment: Accepted in Nature Physic

    Pair-breaking quantum phase transition in superconducting nanowires

    Full text link
    A quantum phase transition (QPT) between distinct ground states of matter is a wide-spread phenomenon in nature, yet there are only a few experimentally accessible systems where the microscopic mechanism of the transition can be tested and understood. These cases are unique and form the experimentally established foundation for our understanding of quantum critical phenomena. Here we report the discovery that a magnetic-field-driven QPT in superconducting nanowires - a prototypical 1d-system - can be fully explained by the critical theory of pair-breaking transitions characterized by a correlation length exponent ν1\nu \approx 1 and dynamic critical exponent z2z \approx 2. We find that in the quantum critical regime, the electrical conductivity is in agreement with a theoretically predicted scaling function and, moreover, that the theory quantitatively describes the dependence of conductivity on the critical temperature, field magnitude and orientation, nanowire cross sectional area, and microscopic parameters of the nanowire material. At the critical field, the conductivity follows a T(d2)/zT^{(d-2)/z} dependence predicted by phenomenological scaling theories and more recently obtained within a holographic framework. Our work uncovers the microscopic processes governing the transition: The pair-breaking effect of the magnetic field on interacting Cooper pairs overdamped by their coupling to electronic degrees of freedom. It also reveals the universal character of continuous quantum phase transitions.Comment: 22 pages, 5 figure
    corecore