Geometrical properties of energy bands underlie fascinating phenomena in a
wide-range of systems, including solid-state materials, ultracold gases and
photonics. Most famously, local geometrical characteristics like the Berry
curvature can be related to global topological invariants such as those
classifying quantum Hall states or topological insulators. Regardless of the
band topology, however, any non-zero Berry curvature can have important
consequences, such as in the semi-classical evolution of a wave packet. Here,
we experimentally demonstrate for the first time that wave packet dynamics can
be used to directly map out the Berry curvature. To this end, we use optical
pulses in two coupled fibre loops to study the discrete time-evolution of a
wave packet in a 1D geometrical "charge" pump, where the Berry curvature leads
to an anomalous displacement of the wave packet under pumping. This is both the
first direct observation of Berry curvature effects in an optical system, and,
more generally, the proof-of-principle demonstration that semi-classical
dynamics can serve as a high-resolution tool for mapping out geometrical
properties