research

Fractional quantum Hall effect in the absence of Landau levels

Abstract

It has been well-known that topological phenomena with fractional excitations, i.e., the fractional quantum Hall effect (FQHE) \cite{Tsui1982} will emerge when electrons move in Landau levels. In this letter, we report the discovery of the FQHE in the absence of Landau levels in an interacting fermion model. The non-interacting part of our Hamiltonian is the recently proposed topologically nontrivial flat band model on the checkerboard lattice \cite{sun}. In the presence of nearest-neighboring repulsion (UU), we find that at 1/3 filling, the Fermi-liquid state is unstable towards FQHE. At 1/5 filling, however, a next-nearest-neighboring repulsion is needed for the occurrence of the 1/5 FQHE when UU is not too strong. We demonstrate the characteristic features of these novel states and determine the phase diagram correspondingly.Comment: 6 pages and 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions