99 research outputs found
Further spectral and chromatographic studies of ambergris.
Jetsam ambergris, found washed ashore on beaches, is an environmentally modified form of a natural product of Sperm whales which sometimes develops a pleasant odour. Odorous samples have proved valuable in perfumery. Identification of jetsam ambergris by analysis of organic-soluble extracts by Fourier transform infra-red spectroscopy (FTIR) and of derivatised samples by gas chromatography-mass spectrometry (GC-MS) has already been shown. Here, we describe a different method, in which characteristic alkenic protons and carbon atoms of the major constituent ambrein, were identified in whole extracts using nuclear magnetic resonance spectroscopy (NMR). The advantages of employing NMR spectroscopy included rapidity, reduced losses of volatiles compared to GC-MS and detection of non-GC amenable constituents. However, the identities and quantities of co-occurring individual components (e.g. steroids) could not easily be assigned in the unfractionated extracts by NMR spectroscopy, whereas they were by GC-MS, so an approach combining FTIR, GC-MS and NMR spectroscopic methods is advocated
Multimode vibrational effects in single molecule conductance: A nonequilibrium Green's function approach
The role of multimode vibrational dynamics in electron transport through
single molecule junctions is investigated. The study is based on a generic
model, which describes charge transport through a single molecule that is
attached to metal leads. To address vibrationally-coupled electron transport,
we employ a nonequilibrium Green's function approach that extends a method
recently proposed by Galperin et al. [Phys. Rev. B 73, 045314 (2006)] to
multiple vibrational modes. The methodology is applied to two systems: a
generic model with two vibrational degrees of freedom and
benzenedibutanethiolate covalently bound to gold electrodes. The results show
that the coupling to multiple vibrational modes can have a significant effect
on the conductance of a molecular junction. In particular, we demonstrate the
effect of electronically induced coupling between different vibrational modes
and study nonequilibrium vibrational effects by calculating the current-induced
excitation of vibrational modes.Comment: 31 pages, 10 figure
Are we ready to transfer optical light to gamma-rays?
Scattering relativistic electrons with optical lasers can result in a
significant frequency upshift for the photons, potentially producing
-rays. This is what linear Compton scattering taught us. Ultra-intense
lasers offer nowadays a new paradigm where multi-photon absorption effects come
into play. These effects can result in higher harmonics, higher yields and also
electron-positron pairs. This article intends to discriminate the different
laser scenarios that have been proposed over the past years as well as to give
scaling laws for future experiments. The energy conversion from laser or
particles to high-frequency photons is addressed for both the well-known
counter propagating electron beam-laser interaction and for
Quantum-electrodynamics cascades triggered by various lasers. Constructing
bright and energetic gamma-ray sources in controlled conditions is within an
ace of seeing the light of day.Comment: 9 pages, 9 figure
An efficient scheme for numerical simulations of the spin-bath decoherence
We demonstrate that the Chebyshev expansion method is a very efficient
numerical tool for studying spin-bath decoherence of quantum systems. We
consider two typical problems arising in studying decoherence of quantum
systems consisting of few coupled spins: (i) determining the pointer states of
the system, and (ii) determining the temporal decay of quantum oscillations. As
our results demonstrate, for determining the pointer states, the
Chebyshev-based scheme is at least a factor of 8 faster than existing
algorithms based on the Suzuki-Trotter decomposition. For the problems of
second type, the Chebyshev-based approach has been 3--4 times faster than the
Suzuki-Trotter-based schemes. This conclusion holds qualitatively for a wide
spectrum of systems, with different spin baths and different Hamiltonians.Comment: 8 pages (RevTeX), 3 EPS figure
The Physical Basis for Long-lived Electronic Coherence in Photosynthetic Light Harvesting Systems
The physical basis for observed long-lived electronic coherence in
photosynthetic light-harvesting systems is identified using an analytically
soluble model. Three physical features are found to be responsible for their
long coherence lifetimes: i) the small energy gap between excitonic states, ii)
the small ratio of the energy gap to the coupling between excitonic states, and
iii) the fact that the molecular characteristics place the system in an
effective low temperature regime, even at ambient conditions. Using this
approach, we obtain decoherence times for a dimer model with FMO parameters of
160 fs at 77 K and 80 fs at 277 K. As such, significant
oscillations are found to persist for 600 fs and 300 fs, respectively, in
accord with the experiment and with previous computations. Similar good
agreement is found for PC645 at room temperature, with oscillations persisting
for 400 fs. The analytic expressions obtained provide direct insight into the
parameter dependence of the decoherence time scales.Comment: 5 figures; J. Phys. Chem. Lett. (2011
Semiclassical theory of spin-orbit interaction in the extended phase space
We consider the semiclassical theory in a joint phase space of spin and
orbital degrees of freedom. The method is developed from the path integrals
using the spin-coherent-state representation, and yields the trace formula for
the density of states. We discuss special cases, such as weak and strong
spin-orbit coupling, and relate the present theory to the earlier approaches.Comment: 36 pages, 8 figures. Version 2: revised Sec. 4.4 and Appendix B;
minor corrections elsewher
Semiclassical Approximations in Phase Space with Coherent States
We present a complete derivation of the semiclassical limit of the coherent
state propagator in one dimension, starting from path integrals in phase space.
We show that the arbitrariness in the path integral representation, which
follows from the overcompleteness of the coherent states, results in many
different semiclassical limits. We explicitly derive two possible semiclassical
formulae for the propagator, we suggest a third one, and we discuss their
relationships. We also derive an initial value representation for the
semiclassical propagator, based on an initial gaussian wavepacket. It turns out
to be related to, but different from, Heller's thawed gaussian approximation.
It is very different from the Herman--Kluk formula, which is not a correct
semiclassical limit. We point out errors in two derivations of the latter.
Finally we show how the semiclassical coherent state propagators lead to
WKB-type quantization rules and to approximations for the Husimi distributions
of stationary states.Comment: 80 pages, 4 figure
Basis set generation for quantum dynamics simulations using simple trajectory-based methods
Methods for solving the time-dependent Schrödinger equation generally employ either a global static basis set, which is fixed at the outset, or a dynamic basis set, which evolves according to classical-like or variational equations of motion; the former approach results in the well-known exponential scaling with system size, while the latter can suffer from challenging numerical problems, such as singular matrices, as well as violation of energy conservation. Here, we suggest a middle road: building a basis set using trajectories to place time-independent basis functions in the regions of phase space relevant to wave function propagation. This simple approach, which potentially circumvents many of the problems traditionally associated with global or dynamic basis sets, is successfully demonstrated for two challenging benchmark problems in quantum dynamics, namely, relaxation dynamics following photoexcitation in pyrazine, and the spin Boson model
- …