The physical basis for observed long-lived electronic coherence in
photosynthetic light-harvesting systems is identified using an analytically
soluble model. Three physical features are found to be responsible for their
long coherence lifetimes: i) the small energy gap between excitonic states, ii)
the small ratio of the energy gap to the coupling between excitonic states, and
iii) the fact that the molecular characteristics place the system in an
effective low temperature regime, even at ambient conditions. Using this
approach, we obtain decoherence times for a dimer model with FMO parameters of
≈ 160 fs at 77 K and ≈ 80 fs at 277 K. As such, significant
oscillations are found to persist for 600 fs and 300 fs, respectively, in
accord with the experiment and with previous computations. Similar good
agreement is found for PC645 at room temperature, with oscillations persisting
for 400 fs. The analytic expressions obtained provide direct insight into the
parameter dependence of the decoherence time scales.Comment: 5 figures; J. Phys. Chem. Lett. (2011