787 research outputs found

    Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the 'elimination' era

    Get PDF
    Multi-host infectious agents challenge our abilities to understand, predict and manage disease dynamics. Within this, many infectious agents are also able to use, simultaneously or sequentially, multiple modes of transmission. Furthermore, the relative importance of different host species and modes can itself be dynamic, with potential for switches and shifts in host range and/ or transmission mode in response to changing selective pressures, such as those imposed by disease control interventions. The epidemiology of such multi-host, multi-mode infectious agents thereby can involve a multi-faceted community of definitive and intermediate/secondary hosts or vectors, often together with infectious stages in the environment, all of which may represent potential targets, as well as specific challenges, particularly where disease elimination is proposed. Here, we explore, focusing on examples fromboth human and animal pathogen systems, why and how we should aim to disentangle and quantify the relative importance of multi-host multi-mode infectious agent transmission dynamics under contrasting conditions, and ultimately, how this can be used to help achieve efficient and effective disease control. This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'

    Analytically Derived Switching-Functions For Exact H-2(+) Eigenstates

    Get PDF
    Electron translation factors (ETF\u27s) appropriate for slow atomic collisions may be constructed using switching functions. In this paper we derive a set of switching functions for the H2+ system by an analytical two-center decomposition of the exact molecular eigenstates. These switching functions are closely approximated by the simple form f=bη, where η is the angle variable of prolate spheroidal coordinates. For given united atom angular momentum quantum numbers (l,m), the characteristic parameter blm depends only on the quantity c2=-∊R22, where ∊ is the electronic binding energy and R the internuclear distance in a.u. The resulting parameters are in excellent agreement with those found in our earlier work by a heuristic optimization scheme based on a study of coupling matrix-element behavior for a number of H2+ states. An approximate extension to asymmetric cases (HeH2+) has also been made. Nonadiabatic couplings based on these switching functions have been used in recent close-coupling calculations for H+-H(1s) collisions and He2+-H(1s) collisions at energies 1.0-20 keV

    Joint spatiotemporal models to predict seabird densities at sea

    Get PDF
    Introduction: Seabirds are abundant, conspicuous members of marine ecosystems worldwide. Synthesis of distribution data compiled over time is required to address regional management issues and understand ecosystem change. Major challenges when estimating seabird densities at sea arise from variability in dispersion of the birds, sampling effort over time and space, and differences in bird detection rates associated with survey vessel type. Methods: Using a novel approach for modeling seabirds at sea, we applied joint dynamic species distribution models (JDSDM) with a vector-autoregressive spatiotemporal framework to survey data collected over nearly five decades and archived in the North Pacific Pelagic Seabird Database. We produced monthly gridded density predictions and abundance estimates for 8 species groups (77% of all birds observed) within Cook Inlet, Alaska. JDSDMs included habitat covariates to inform density predictions in unsampled areas and accounted for changes in observed densities due to differing survey methods and decadal-scale variation in ocean conditions. Results: The best fit model provided a high level of explanatory power (86% of deviance explained). Abundance estimates were reasonably precise, and consistent with limited historical studies. Modeled densities identified seasonal variability in abundance with peak numbers of all species groups in July or August. Seabirds were largely absent from the study region in either fall (e.g., murrelets) or spring (e.g., puffins) months, or both periods (shearwaters). Discussion: Our results indicated that pelagic shearwaters (Ardenna spp.) and tufted puffin (Fratercula cirrhata) have declined over the past four decades and these taxa warrant further investigation into underlying mechanisms explaining these trends. JDSDMs provide a useful tool to estimate seabird distribution and seasonal trends that will facilitate risk assessments and planning in areas affected by human activities such as oil and gas development, shipping, and offshore wind and renewable energy

    Herbimycins D-F, Ansamycin Analogues from \u3cem\u3eStreptomyces\u3c/em\u3e sp. RM-7-15

    Get PDF
    Bacterial strains belonging to the class actinomycetes were isolated from the soil near a thermal vent of the Ruth Mullins coal fire (Appalachian mountains of Eastern Kentucky). High resolution electrospray ionization mass spectrometry (HR-ESI-MS) and ultraviolet (UV) absorption profiles of metabolites from one of the isolates (Streptomyces sp. RM-7-15) revealed the presence of a unique set of metabolites ultimately determined to be herbimycins D-F (1–3). In addition, herbimycin A (4), dihydroherbimycin A (TAN 420E) (7), and the structurally distinct antibiotic bicycylomycin were isolated from the crude extract of Streptomyces sp. RM-7-15. Herbimycins A, D-F (1–3) displayed comparable binding affinities to the Hsp90α. While the new analogues were found to be inactive in cancer cell cytotoxicity and antimicrobial assays, they may offer new insights in the context of non-toxic ansamycin-based Hsp90 inhibitors for the treatment of neurodegenerative disease

    Structural Characterization of CalS8, a TDP-α-D-Glucose Dehydrogenase Involved in Calicheamicin Aminodideoxypentose Biosynthesis

    Get PDF
    Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-α-d-glucose (UDP-Glc) to the key metabolic precursor UDP-α-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a \u3e15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8·substrate·cofactor ternary complex (at 2.47 and 1.95 Å resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process

    The Native Production of the Sesquiterpene Isopterocarpolone by \u3cem\u3eStreptomyces\u3c/em\u3e sp. RM-14-6

    Get PDF
    We report the production, isolation and structure elucidation of the sesquiterpene isopterocarpolone from an Appalachian isolate Streptomyces species RM-14-6. While isopterocarpolone was previously put forth as a putative plant metabolite, this study highlights the first native bacterial production of isopterocarpolone and the first full characterisation of isopterocarpolone using 1D and 2D NMR spectroscopy and HR-ESI mass spectrometry. Considering the biosynthesis of closely related metabolites (geosmin or 5-epiaristolochene), the structure of isopterocarpolone also suggests the potential participation of one or more unique enzymatic transformations. In this context, this work also sets the stage for the elucidation of potentially novel bacterial biosynthetic machinery

    Far-infrared study of the Jahn-Teller distorted C60 monoanion in C60 tetraphenylphosphoniumiodide

    Get PDF
    We report high-resolution far-infrared transmission measurements on C(60)-tetraphenylphosphoniumiodide as a function of temperature. In the spectral region investigated (20-650 cm(-1)), we assign intramolecular modes of the C(60) monoanion and identify low-frequency combination modes. The well-known F(1u)(1) and F(1u)(2) modes are split into doublers at room temperature, indicating a D(5d) or D(3d) distorted ball. This result is consistent with a dynamic Jahn-Teller effect in the strong-coupling limit or with a static distortion stabilized by low-symmetry perturbations. The appearance of silent odd modes is in keeping with symmetry reduction of the hall, while activation of even modes is attributed to interband electron-phonon coupling and orientational disorder in the fulleride salt. Temperature dependences reveal a weak transition in the region 125-150 K in both C(60)(-) and counterion modes, indicating a bulk, rather than solely molecular, effect. Anomalous softening (with decreasing temperature) in several modes may correlate with the radial character of those vibrations. [S0163-1829(98)03245-7]

    Structural Dynamics of a Methionine γ-lyase for Calicheamicin Biosynthesis: Rotation of the Conserved Tyrosine Stacking with Pyridoxal Phosphate

    Get PDF
    CalE6 from Micromonospora echinospora is a (pyridoxal 5′ phosphate) PLP-dependent methionine γ-lyase involved in the biosynthesis of calicheamicins. We report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acidcomplex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structuralanalysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis and holoenzyme maturation

    The roles of age at puberty and energy restriction |in sow reproductive longevity: a genomic perspective

    Get PDF
    Approximately 50% of sows are culled annually with more than one-third due to poor fertility. Our research demonstrated that age at puberty is an early pre-breeding indicator of reproductive longevity. Age at puberty can be measured early in life, has a moderate heritability, and is negatively correlated with lifetime number of parities. Detection of age at puberty is tedious and time consuming and is therefore not collected by the industry, which limits genetic progress. Genomic prediction is a viable approach to preselect gilts that will express puberty early and have superior reproductive longevity. The hypothesis that genetic variants explaining differences in age at puberty also explain differences in sow reproductive longevity was tested. Phenotypes, genotypes, and tissues from the UNL resource population (n \u3e 1700) were used in genome-wide association analyses, genome, and RNA sequencing to uncover functional polymorphisms that could explain variation in puberty and reproductive longevity. A BeadArray including 56,424 SNP explained 25.2% of the phenotypic variation in age at puberty in a training set (n = 820). Evaluation of major windows and SNPs of subsequent batches of similar genetics (n = 412) showed that if all SNPs located in the major 1-Mb windows were tested, they explained a substantial amount of phenotypic variation (12.3 to 36.8%). Due to differences in linkage disequilibrium status, the most informative SNP from these windows explained a lower proportion of the variation (6.5 to 23.7%). To improve genomic predictive ability, the limited capability of BeadArray was enhanced by potential functional variants uncovered by genome sequencing of selected sires (n = 20; \u3e20X). There were 11.2 mil. SNPs and 2.9 mil. indels discovered across sires and reference genomes. The role of gene expression differences in explaining phenotypic variation in age at puberty was investigated by RNA sequencing of the hypothalamic arcuate nucleus (ARC) in gilts (n = 37) with different pubertal statuses. Seventy genes, including genes involved in reproductive processes, were differentially expressed between gilts with early and late puberty status (Padj \u3c 0.1). Dietary restriction of energy 3 mo before breeding delayed puberty by 7 d but improved the potential of a sow producing up to three parities (P \u3c 0.05). Energy restriction was associated with differential expression in 42 genes in the ARC, including genes involved in energy metabolism. This integrated genomic information will be evaluated in commercial populations to improve the reproductive potential of sows through genomic selection. This project is supported by AFRI Competitive grant no. 2013-68004-20370 from the USDA-NIFA. USDA is an equal opportunity provider and employer

    Structure Determination, Functional Characterization, and Biosynthetic Implications of Nybomycin Metabolites from a Mining Reclamation Site-Associated \u3cem\u3eStreptomyces\u3c/em\u3e

    Get PDF
    We report the isolation and characterization of three new nybomycins (nybomycins B–D, 1–3) and six known compounds (nybomycin, 4; deoxynyboquinone, 5; α-rubromycin, 6; β-rubromycin, 7; γ-rubromycin, 8; and [2α(1E,3E),4β]-2-(1,3-pentadienyl)-4-piperidinol, 9) from the Rock Creek (McCreary County, KY) underground coal mine acid reclamation site isolate Streptomyces sp. AD-3-6. Nybomycin D (3) and deoxynyboquinone (5) displayed moderate (3) to potent (5) cancer cell line cytotoxicity and displayed weak to moderate anti-Gram-(+) bacterial activity, whereas rubromycins 6–8 displayed little to no cancer cell line cytotoxicity but moderate to potent anti-Gram-(+) bacterial and antifungal activity. Assessment of the impact of 3 or 5 cancer cell line treatment on 4E-BP1 phosphorylation, a predictive marker of ROS-mediated control of cap-dependent translation, also revealed deoxynyboquinone (5)-mediated downstream inhibition of 4E-BP1p. Evaluation of 1–9 in a recently established axolotl embryo tail regeneration assay also highlighted the prototypical telomerase inhibitor γ-rubromycin (8) as a new inhibitor of tail regeneration. Cumulatively, this work highlights an alternative nybomycin production strain, a small set of new nybomycin metabolites, and previously unknown functions of rubromycins (antifungal activity and inhibition of tail regeneration) and also provides a basis for revision of the previously proposed nybomycin biosynthetic pathway
    • …
    corecore