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Introduction: Seabirds are abundant, conspicuous members of marine

ecosystems worldwide. Synthesis of distribution data compiled over time is

required to address regional management issues and understand ecosystem

change. Major challenges when estimating seabird densities at sea arise from

variability in dispersion of the birds, sampling effort over time and space, and

differences in bird detection rates associated with survey vessel type.

Methods: Using a novel approach for modeling seabirds at sea, we applied joint

dynamic species distribution models (JDSDM) with a vector-autoregressive

spatiotemporal framework to survey data collected over nearly five decades and

archived in the North Pacific Pelagic Seabird Database. We produced monthly

gridded density predictions and abundance estimates for 8 species groups (77% of

all birds observed) within Cook Inlet, Alaska. JDSDMs included habitat covariates to

inform density predictions in unsampled areas and accounted for changes in

observed densities due to differing survey methods and decadal-scale variation in

ocean conditions.

Results: The best fit model provided a high level of explanatory power (86% of

deviance explained). Abundance estimates were reasonably precise, and

consistent with limited historical studies. Modeled densities identified seasonal

variability in abundance with peak numbers of all species groups in July or August.

Seabirds were largely absent from the study region in either fall (e.g., murrelets) or

spring (e.g., puffins) months, or both periods (shearwaters).

Discussion: Our results indicated that pelagic shearwaters (Ardenna spp.) and

tufted puffin (Fratercula cirrhata) have declined over the past four decades and

these taxa warrant further investigation into underlying mechanisms explaining

these trends. JDSDMs provide a useful tool to estimate seabird distribution and

seasonal trends that will facilitate risk assessments and planning in areas affected

by human activities such as oil and gas development, shipping, and offshore wind

and renewable energy.

KEYWORDS
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Introduction

Knowledge of marine predator species distributions across space

and time is needed to inform a variety of ecosystem processes, as well

as to identify habitat use by marine wildlife as required for

management purposes (Warwick et al., 2021). Seabirds are meso- to

upper trophic level marine predators that spend the most of their time

foraging at sea, where they are relatively easy to identify and count

from vessels (Tasker et al., 2009). Survey data can be synthesized to

provide insight into seabird distribution and abundance, interspecific

interactions, and marine ecosystem structure (Ballance, 2007).

Information on the abundance of seabirds at sea is necessary to

inform management of marine bird populations that may be

vulnerable to human activities such as shipping, offshore energy

development, or to aid conservation of threatened seabird species

(Yen et al., 2005; Renner and Kuletz, 2015). Identifying the seasonal

distribution of biological resources with high sensitivity to oil

pollution and vulnerability to offshore wind energy infrastructure

(Kelsey et al., 2018) is a priority in continental shelf regions that are

leased for offshore energy project developments (Petersen et al.,

2019). Additionally, resulting data products (e.g., species

distribution maps) can inform essential management decisions for

fisheries when assessing risk to marine birds and mammals from

fishing gear and other industrial fishing activities (Zador et al., 2008;

Fox et al., 2021).

Pelagic seabird survey databases currently exist for many

important and productive large marine ecosystems around the

world. Among the largest is the North Pacific Pelagic Seabird

Database (NPPSD), which includes data obtained mostly from the

continental shelf and adjacent deep ocean waters of western North

America (Drew et al., 2005). The current version contains strip

transect data on >20 million seabirds, collected by hundreds of

investigators operating from different vessel types during the past

47 years. Data from the NPPSD have been used to inform many

issues, including status and trends, threats to populations, climate

change, endangered species, habitat use, and trophic relationships

(Humphries et al., 2012; Renner et al., 2013; Kuletz et al., 2015).

Statistical difficulties when analyzing at sea survey data arise from

large spatiotemporal variability in seabird dispersion and sampling

effort and bias associated with variable survey methods and and vessel

types. Because seabirds often aggregate when foraging, survey data are

overdispersed and have a high frequency of zero-values. Therefore, it

can be challenging to accurately estimate seabird densities, account

for environmental variability, and adjust for methodological bias

within a single analysis. Perhaps not surprisingly, commercial

groundfish stock assessments using vessel-based survey data are

confounded by many of the same statistical issues. For that reason,

we tested a geostatistical approach for analysis of seabird data using a

modeling framework originally developed for fisheries science

(Thorson et al., 2015).

Our main purpose was to produce gridded species distribution

models to assess monthly seabird abundance and seasonal trends

based on contemporary density levels to inform current management

decisions. We applied a Vector Autoregressive Spatiotemporal

(VAST) model to quantify spatiotemporal variability of seabird

abundance in Cook Inlet, Alaska and tested the model’s efficacy in

accounting for environmental factors and methodological differences

in surveys over time. Specifically, we applied Joint Dynamic Species

Distribution Models (JDSDMs) to generate density estimates for

species based on spatiotemporal covariance among species

(Thorson et al., 2016). JDSDMs can improve predictive power over

single-species models (Ovaskainen et al., 2016), and may be especially

useful for rare or cryptic species because they use shared information

from spatiotemporal covariance of more abundant or identifiable

community members (Omori and Thorson, 2022). JDSDMs were

originally developed to model distributions of fish and other taxa

(Thorson et al., 2016), but herein we apply them to seabirds for the

first time.

Methods and materials

Study area

Cook Inlet is a shallow (~65% of area< 80 m depth), tidally-

influenced estuary that extends ~350 km north of the Gulf of Alaska

continental shelf. At its mouth, Kennedy Entrance is 90 km wide

between the Kenai and Alaska Peninsulas. The Inlet is a main

shipping route to Anchorage, the state’s population center and

commerce hub, and a region with commercial and sport fisheries,

large seabird refuges, and an active offshore oil and gas industry. Our

study region includes the area between Kennedy Entrance and Kalgin

Island (Figure 1; 58.8 – 60.4°N Latitude, 151-154.2°W Longitude).

Three marine ecoregions (Figure 1; Piatt and Springer, 2007) in Cook

Inlet are characterized by distinct oceanographic conditions: warm,

fresh, and sediment-laden waters that flow south along the west side;

upwelling and strong northward currents that create nutrient rich and

productive conditions at the mouth and along the east side; and

glacially-influenced estuarine conditions occur within inner

Kachemak Bay (Speckman et al., 2005).

Data

We compiled data from at sea surveys conducted in lower Cook

Inlet spanning March to October from 1975 to 2021 (Figure 2; Drew

et al., 2005). This includes systematic surveys conducted on cross-

inlet transects during the 1990’s (Piatt, 1993; Agler et al., 1995; Piatt,

2002), some of which were repeated in 2016-2021 (Arimitsu et al.,

2021b), surveys of Kachemak Bay during multiple years (Kuletz et al.,

2011), and opportunistic surveys (e.g., most surveys during the 1970s

and early 1980s). Most surveys were conducted using strip-transect

protocols developed for pelagic (Gould and Forsell, 1989) and coastal

(Irons et al., 2000) surveys. Strip transect surveys were summarized

into 3-4 km long transect segments as the sample unit. Observations

of live birds made within the survey transect area (km2, transect

length x strip width) during boat-based pelagic surveys were summed

across behaviors (on the water, flying, foraging) for each

transect segment.

We modeled joint dynamic species distributions for dark

shearwaters (Ardenna spp., including A. grisea and A. tenuirostris),

black-legged kittiwake (Rissa tridactyla), common murre (Uria aalge),
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pigeon guillemot (Cepphus columba), Kittlitz ’s murrelet

(Brachyramphus brevirostris), marbled murrelet (B. marmoratus),

horned puffin (Fratercula corniculata), and tufted puffin (F.

cirrhata). Together these species comprise 77% of all birds counted

on surveys in Cook Inlet.

Unidentified Brachyramphus murrelets (n = 4653) were

apportioned to species using the ratio of identified Brachyramphus

species (Arimitsu et al., 2011). Species apportionment was applied pro

rata at the transect level, or within a 12.5 km diameter hexagonal grid

(~100 km2). On occasions that no birds were identified to species

within a grid cell, we applied the regional species proportions (0.13

Kittlitz’s murrelet: 0.87 marbled murrelet). Two morphologically

similar Ardenna shearwaters were not apportioned to species

because of persistently low identification rates.

Model specification

JDSDMs were implemented within the VAST modeling

framework (Thorson, 2019). Seabird count data were modeled at

the monthly time scale with a Poisson-link delta model using a

Gamma error distribution. This approach jointly models encounter

rates using presence/absence data and positive density using non-zero

count data with an offset for area sampled (a, km2). For sample i,

species c, location s, and month t, linear predictors representing

encounter probability p1(i):

p1(i) = o
nb1

f=1

Lb1 (ci, f )b1(ti, f )

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Temporal variation

+ o
nw1

f=1

Lw1
(ci, f )w1(si, f )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Spatial variation

+ o
nϵ1

f=1

Le1 (ci, f )e1(si, f , ti)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Spatio−temporal variation

       + o
np

p=1
g1(ci, p)X(i, ti, p)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Habitat covariates

+ o
nh1

f=1

L1(ci, f )h1(vi, f )

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Detection effects

+ o
nk

k=1

l1(k)Q(i, k)
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Decadal effects

and positive density p2(i):

p2(i) = o
nb2

f=1

Lb2 (ci, f )b2(ti, f )

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Temporal variation

+ o
nw2

f=1

Lw2
(ci, f )w2(si, f )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Spatial variation

+ o
nϵ2

f=1

Lϵ2 (ci, f )e2(si, f , ti)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Spatio−temporal variation

       + o
nh2

f=1

L2(ci, f )h2(vi, f )

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Detection effects

+ o
nk

k=1

l2(k)Q(i, k)
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Decadal effects

Where subscripts 1 and 2 refer to the first and second linear

predictors, h is the number of factors f, L refers to loading’s matrices

for b temporal, w spatial, and e spatiotemporal sources of variation

generating covariation among species. g1(ci,p) is the average effect of X
(i,ti,p), which is a three-dimensional array of np habitat covariates,

and h1(v1,f) represents random variation among detection factors,

which are coded in VAST as vessel effects. Finally, Q(i,k) is a matrix

composed of nk decadal factors, and l1(k) is the estimated effect of

decadal factors, which are coded in VAST as catchability covariates.

Link functions r1 and r2:

r1 ið Þ = 1 − exp −ai � exp p1 ið Þð Þð Þ and r2 ið Þ

=
ai � exp p2 ið Þð Þ

r2 ið Þ � exp p2 ið Þð Þ

are combined to estimate variation in density d:

d s,   c,   tð Þ = r1 s, c, tð Þ � r2 s, c, tð Þ
VAST uses stochastic partial differential equations to approximate

a Matérn correlation function to smooth across points in space,

assuming that observations closer to one another are more similar

than more distant observations. We applied a 2-D mesh sampling

across 500 knots, and used factor-model decomposition to model

covariation among species with two spatial and spatiotemporal

factors (Thorson et al., 2016). Parameters associated with temporal

variability (b1 and b2) and spatiotemporal variability (e1 and e2) were
modeled as random effects following a random walk.

Habitat covariates
We applied static habitat covariates (Figures 1B–D) to improve

model fit and to inform predictions across unsampled areas.

Locations were assigned to marine ecoregion, which were included

as a categorical predictor, and we explored models that applied

distance to shore and bottom depth (correlation = 0.53) with linear

and quadratic terms. Bottom depth was extracted from a smooth

FIGURE 1

Maps of study region. (A) 5x5 km prediction grid (grey circles), major
seabird colony locations (red circles), and potential oil and gas lease
sale blocks (black polygons) in Cook Inlet, Alaska. (B–D) Habitat
covariates: bottom depth (m, Zimmermann and Prescott, 2014),
distance to shore (km), and spatial extent of marine ecoregions
defining major oceanographic features (Piatt and Springer, 2007).
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sheet bathymetry grid at 50 m x 50 m resolution (Zimmermann and

Prescott, 2014), or in areas outside this grid we used the General

Bathymetric Chart of the Oceans 15 arc-second grid (GEBCO

Compilation Group, 2020). Habitat covariates were applied only to

the first linear predictor because exploratory analyses indicated that

including them for both linear predictors didn’t further improve

model fit [evaluated by minimum Akiake Information Criteria (AIC),

not shown]. Our use of static covariates in this manner was to

improve predictions rather than to explain ecological relationships.

Detection effects
To account for random variation in observed densities among

survey platforms and protocols, we included vessel platform size

(small boat< 15 m vs. large boat ≥ 15 m) and flying bird counting

method (continuous vs. snapshot, Tasker et al., 2009) as detection

factors in four combinations.

Decadal effects
Because models were based on historical data with unequal

sampling across space and time, we estimated spatial variability in

seabird densities across year groupings (1975–1988, 1989–1998,

1999–2013, 2014–2021), which were chosen as the approximate

year of inflection between decadal-scale ocean temperature patterns

defining ecosystem states in the Gulf of Alaska. These include the

1989 regime shift (Hare and Mantua, 2000), the shift towards negative

Pacific Decadal Oscillation conditions in 1999 (Bond et al., 2003), and

the multi-year marine heatwaves that occurred after 2013 with acute

and lingering ecosystem impacts on seabirds and their prey resources

(Piatt et al., 2020; Arimitsu et al., 2021a; Schoen et al., 2022). Some

year groupings were based partly on data availability (Figure S1), e.g.,

only two years were sampled prior to the 1976–1977 regime shift

(Hare and Mantua, 2000), so we grouped those years with the 1977–

1988 (warm) period. Similarly, few bird survey data are available to

A

B

FIGURE 2

Seabird surveys in Cook Inlet, Alaska. (A) Factors known to affect detection rates of seabirds at sea were modeled as detection effects (colors). (B) Year
groupings were modeled as decadal factors, to account for variation in density over time and to condition species-specific monthly density predictions
upon contemporary (2014-2021) density levels.
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resolve effects of warming/cooling that occurred during the 2000’s,

(Janout et al., 2010) so we combined years from 1999–2013.

The purpose of modeling decadal effects was to account for (i.e.,

remove the estimated effect of) changes in density for each decadal

factor relative to the most recent one (i.e., 2014–2021) to produce

predictions based on contemporary density levels for each species. To

better understand the magnitude of density changes over time, we

examined combined effects as the sum of l1(k) and l2(k) for

each species.

Estimation and model diagnostics

Parameters were estimated using maximum likelihood while

integrating the joint likelihood with respect to random effects as

implemented in VAST v.3.9.0 (www.github.com/James-Thorson-

NOAA/VAST) with R version 4.1.2 (R Core Team, 2021). Model fit

was evaluated for convergence and validated using simulation-based

quantile residuals with the DHARMa package (Hartig, 2022). AIC,

graphical measures, and percent deviance explained (PDE) were also

used as model diagnostics. We used AIC to evaluate the effectiveness

of JDSDM for improving the model fit compared to univariate index

models for each species following Thorson et al. (2016). Density

predictions were extrapolated to a 5 km x 5 km grid over the study

area, a spatial scale similar to transect segment length and relevant to

potential oil and gas lease sale blocks in this region (Figure 1A) and

plotted on log scale by species group for each month. To identify

variability in seabird abundance across months, area-weighted and

bias-corrected predicted densities were summed across the study area

to provide an abundance estimate for each species.

Results

JDSDM predictions provided a high level of explanatory power

across space and time (85.9 PDE). Although quantile residuals

indicate the presence of outliers in this model configuration,

standardized residuals and quantile-quantile plots were

approximately normal, and residual patterns were evenly

distributed across predictions for each species (Figures S2, S3). The

best fit model based on minimum AIC included marine ecoregion as a

categorical predictor, and second-degree polynomial fits for bottom

depth and distance to shore (Table 1). Ecoregion effects estimates

indicate that compared with the Inner Bay Estuary, shearwaters and

horned puffin had higher probability of occurrence in the SE

Upwelling region and Western Cook Inlet, and pigeon guillemot

had lower probability of occurrence in Western Cook Inlet

(Figure S4).

The model predicted monthly distributions for each species

(Figures 3; S5–S12) and estimated seasonal abundance patterns

along with their uncertainty. (Figure 4 and Table 2). Abundance

was greatest during summer months (June–August) but patterns

differed among species. Trans-equatorial migrant shearwaters (non-

breeding) were widely distributed within Cook Inlet during May–

August (Figure 3), with peak abundance in July (Figure 4). Black-

legged kittiwakes occurred in higher densities in coastal areas and

near colonies (Figure 3), but abundance was more stable through the

summer (June–August) than other months or compared with other

species (Figure 4). Common murres were concentrated in the SE

Upwelling region from Kennedy Entrance and north to outer

Kachemak Bay. Like kittiwakes, murres were dense in waters

adjacent to their colonies (Figure 3) and abundance estimates were

relatively more stable through the summer (June-August) than during

other months or species (Figure 4). Abundance of Kittlitz’s and

marbled murrelets peaked in July then declined in September and

October following their breeding season (Figure 4). Pigeon guillemot

numbers peaked in June (Figure 4), few were observed in September

and October, but in contrast to murrelets they were commonly found

during winter and spring. Their distribution was limited to more

southern and coastal portions of the study area (Figure 3), and in

association with small colonies, scattered along both sides of the Inlet.

Tufted puffins were concentrated in the turbulent southern waters

near their large breeding colony on the Barren Islands, at the entrance

to Cook Inlet (Figure 3). Horned puffin were most abundant near

their breeding colonies on Chisik Island (western Cook Inlet) and

Barren Islands, and along a southeasterly track from there to Anchor

Point (Figure 3). Abundance of both puffin species peaked in June

through August followed by a decline into the fall (Figure 4).

As expected, the combined detection effects of boat size and flying-

bird-counting methods on predicted densities identified substantial

TABLE 1 Model selection for habitat covariates used in seabird distribution models based on minimum Akaike Information Criteria (DAIC = 0).

Encounter Rate Model Habitat Covariate Formula DAIC parameters

~ factor(ecoregion) + poly(distance_coast, degree = 2) + poly(bottom_depth, degree = 2) 0.0 48

~ ecoregion + poly(distance_coast, degree = 3) + poly(bottom_depth, degree = 3) 28.0 64

~ ecoregion + poly(distance_coast, degree = 2) 129.9 32

~ poly(distance_coast, degree = 2) + poly(bottom_depth, degree = 2) 163.5 32

~ ecoregion + poly(bottom_depth, degree = 2) 237.1 32

~ poly(distance_coast, degree = 2) 287.3 16

~ ecoregion 397.3 16

~ poly(bottom_depth, degree = 2) 494.4 16

NA 734.3 0

Poly, polynomial fit, NA, no covariates were applied.
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effects that differed among species (Figure 5A). Large boat detection

effects were generally neutral or negative (observed the same or more

birds) and and small boat effects were generally neutral or positive

(same or fewer birds). Detection factors contrasting flying bird count

methods were mixed negative and positive, indicating that vessel size

was a stronger and more consistent driver of detection effects in our

study region. Estimated detection effects for shearwaters, pigeon

guillemots, and tufted puffins were lower in magnitude and

variability, indicating that boat size and flying bird counting method

had lesser effects on predicted densities for these species than for species

smaller in size (Figure 5A).

Combined effects of decadal factors indicate that densities of

shearwaters and tufted puffins have declined over time (Figure 5B).

Densities of kittiwakes and horned puffins were also greater during

1975–1988 and 1989–1998 compared to densities during 2014–2021

but were lowest during 1999–2013 (Figure 5B). Common murre

densities peaked in the 1990’s but declined markedly by the 2020’s.

Densities of pigeon guillemots, which occupy nearshore habitats, were

higher during 1975–1988 than later periods (Figure 5B). Densities of

marbled and Kittlitz’s murrelets declined since the 1990’s but no

significant difference was found in other decades and uncertainty for

the earliest year grouping was high (Figure 5B). Due to limited

sampling of nearshore murrelet habitat from large vessels during

the 1975–1988 period, as well as limited knowledge about the biology,

distribution, and identification of murrelets the early survey years, we

interpret decadal effects for murrelets conservatively for all but the

FIGURE 3

Monthly variation in predicted log density of seabirds in Cook Inlet, Alaska. Log density estimates were standardized to mean = 0 and SD = 1 by species
SHEAR, shearwaters; BLKI, black-legged kittiwake; COMU, common murre; PIGU, pigeon guillemot; KIMU, Kittlitz’s murrelet; MAMU, marbled murrelet;
HOPU, horned puffin; TUPU, tufted puffin.
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1990’s when effort and spatial extent provide the richest data contrasts

(Figures 2; S1).

The JDSDM produced better fits than univariate models (DAIC =

505.9), indicating that predictive ability was improved by

incorporating species covariance across space and time.

Correlations were positive for many species group-pairs for

components that modeled temporal and spatiotemporal variation

but were mixed between positive and negative for the spatial

TABLE 2 Monthly seabird abundance estimates (SE) in Cook Inlet, Alaska.

Mar Apr May Jun Jul Aug Sep Oct

shearwaters
0.003
(0.005)

235.969
(164.42)

17737.855
(5088.332)

138601.111
(32984.321)

276227.428
(52927.512)

57257.5
(10071.898)

49351.722
(10835.34)

8538.509
(2763.295)

black-legged
kittiwake

3293.528
(2117.564)

15663.045
(4136.188)

23509.578
(5693.53)

40258.149
(9669.956)

43782.564
(10130.661)

66202.124
(15298.534)

51256.907
(11839.782)

39169.099
(11484.346)

common murre
12167.897
(4684.43)

24352.771
(6714.678)

23217.598
(6009.582)

33364.816
(8487.939)

35488.586
(8663.428)

37426.613
(9139.896)

23652.736
(5886.975)

10893.055
(4050.878)

horned puffin
0.047
(0.096)

162.404
(122.984)

2265.757
(817.345)

15967.964
(4183.975)

9908.829
(2216.619)

17293.861
(4239.279)

11378.618
(3555.856)

1728.947
(793.449)

Kittlitz’s
murrelet

897.681
(587.466)

350.902
(210.045)

419.042
(224.542)

2672.366
(955.807)

3152.534
(967.758)

1202.38
(420.859)

14.276
(9.596)

0 (0)

marbled
murrelet

12069.95
(4855.34)

6635.014
(2088.021)

7686.75
(2267.723)

16156.097
(3936.838)

23136.925
(5283.853)

20721.059
(4887.017)

3397.429
(1146.55)

8.837
(16.715)

pigeon
guillemot

9416.297
(5167.073)

5630.615
(2070.291)

7608.445
(2537.829)

10328.184
(2221.447)

6275.109
(1873.154)

6021.079
(1858.114)

1833.164
(735.641)

8.367
(10.066)

tufted puffin
26.833
(42.45)

3125.188
(927.61)

17370.786
(3250.114)

35816.998
(10717.095)

26971.894
(4358.665)

23102.916
(3963.431)

16118.747
(3496.218)

2578.599
(992.682)

FIGURE 4

Monthly abundance estimates of seabirds in Cook Inlet, Alaska. Months with zero encounters are indicated by grey circles.
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component (Figure 6). For example, the average spatial variation of

marbled murrelet, and to a lesser extent, of Kittlitz’s murrelet were

negatively correlated to the spatial variation of black-legged kittiwake

and common murre. Species-pairs tended to be similar in seasonality

and habitat use as evidenced by strongly positive correlations of

temporal and spatial components of variability, while negative

correlations in spatial components of variability were associated

with more neutral correlations in temporal components of

variability (Figure 6).

Discussion

In this study we used VAST JDSDMs to assess seasonal variation

in distributions of seabirds using survey data spanning nearly five

decades in Cook Inlet, Alaska. Despite large gaps in data across space

and time, JDSDM generated robust predictions of species

distributions, and derived credible at sea abundance estimates with

relatively narrow confidence limits in most cases. This approach

provides exceptional tools for modeling pelagic seabird data that

can assist managers and scientists with risk management, planning,

research, and conservation.

Predicted densities were strongly correlated among species

groups, indicating the JDSDM effectively shared information across

species. Our approach also used environmental covariates to improve

predictions in unsampled locations and accounted for species-specific

differences in detection among vessel platforms and survey

methodologies. We also estimated decadal effects to account for

changes in density over time, which made it possible to provide

seasonal density distributions at contemporary levels relevant to

current management decisions. We identified strong spatiotemporal

patterns within the seabird community, and several modeled outputs

from this work are relevant to potential assessments of resource

impacts of current and future energy development in Cook Inlet,

Alaska. For the specific purposes of resource management, risk

assessment, and response planning in our study area, gridded

density predictions are available (Arimitsu et al. 2023) for further

analyses by resource managers and agencies concerned with seabird

populations in Cook Inlet.

Recent efforts in the Atlantic and Pacific Outer Continental Shelf

waters have applied spatial predictive modeling to derive seasonal

maps for resource assessments (Winship et al., 2018; Leirness et al.,

2021). These efforts used boosted regression trees (BRT) and

Generalized Additive Models for Location, Scale and Shape

A B

FIGURE 5

Species-specific parameter estimates (median ± SD) for (A) detection effects, which account for differences in boat size and flying bird counting
methods, and (B) decadal effects, which represent the difference between density levels in each year group and those of the most recent years of data,
2014–2021, at zero (dark grey line).
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(GAMLSS) to predict densities of seabirds across space and time. We

applied JDSDM with VAST for a similar purpose due to its flexibility

and ability to reconstruct fine-scale distributions, and also to derive

estimates of monthly total abundance and uncertainty. Previous work

using simulated and empirical data showed that BRT and GAM were

proficient at replicating non-linear relationships with environmental

covariates, but VAST models produced more robust species

abundance indices and associated standard errors than BRT or

GAM (Brodie et al., 2020). Additionally, VAST is designed to

accommodate highly skewed observational data and capable of

modeling survey-specific detection issues commonly encountered in

biological data. Moreover, and specific to seabird at sea survey data,

the geostatistical methods implemented in VASTmake efficient use of

autocorrelation inherent in samples derived from transect data and

can be applied to non-randomized sampling designs with unequal

sampling in space and time.

Gridded density estimates that span seasonal time-scales provided

a of understanding spatiotemporal variation in at sea abundance and

provide information on where or when risk from anthropogenic or

natural perturbations may occur. Risk assessments within the

potential lease sale areas (Figure 1) for Cook Inlet might benefit by

focusing on the upwelling area offshore of Anchor Point and outer

Kachemak Bay, which we show here are local, long-term density

hotspots for seabirds designated as species of conservation concern

including Kittlitz’s murrelet and tufted puffin (USFWS, 2021), and

where large aggregations of migratory shearwaters also occurred

during in summer. Model estimates also provided insight on where

or when more data are required to reduce uncertainty. For example,

large gaps in sampling effort (especially in winter November–March)

and high-density areas near colony locations at the Barren Islands

during summer would be important times and areas to invest more

survey effort. Uncertainty in predicted densities could be reduced as

new data become available, and the predictions reported herein can be

updated using the existing or improved models in the future. Future

applications of JDSDMs to model at sea survey data will focus on

estimating abundance trends of seabirds over larger spatial and

temporal scales, and will also be applied to different species groups,

particularly endangered or threatened species. Although our objective

for this work was to produce seasonal (monthly) abundance estimates

at contemporary (2014–2021) density levels, future work will apply

this application with different model configurations to produce

decadal abundance trends for the peak (July–August) seasonal

density levels.

Our analysis of decadal effects on seabird densities in Cook Inlet

identified persistent declines in Ardenna shearwaters and tufted

puffins since the late-1970’s. The decline in shearwaters was most

pronounced in the 1970’s–1990’s, and may have stabilized in the

2000’s. While Cook Inlet constitutes a small fraction of shearwater

foraging habitat (e.g., Shaffer et al., 2006), significant reductions in

their use of Cook Inlet are consistent with large declines of

shearwaters observed elsewhere in North America during the late-

1980’s and early 1990’s (Veit et al., 1997). More recently there has also

been a large-scale northward redistribution of foraging short-tailed

shearwaters in response to climatic drivers (Kuletz et al., 2020), which

may also affect their residence time and observed abundance in Cook

Inlet. Our results also indicate that declines of tufted puffin densities

at sea continued to the present decade, consistent with reported

declines of tufted puffins throughout the Northern Gulf of Alaska

(Goyert et al., 2017; Cushing et al., 2018), British Columbia, Canada

(Gaston et al., 2009), the U.S. Pacific Northwest (Piatt and Kitaysky,

2002), and throughout its range in North America (Pearson

et al., 2022).

Our results are consistent with previous work that estimated

abundance and trends of seabirds in the region, both from at sea

surveys and colony counts, and distribution patterns identified in this

study are confirmed by what is known about the ecology of seabirds in

the region. For example, Kuletz et al. (2011) documented steep

declines (56–84%) of Brachyramphus murrelets densities in Cook

Inlet during the 1990’s, down from estimates of nearly 60,000 birds in

summer 1993 (Agler et al., 1998). In line with previous estimates and

magnitude of declines, we estimated contemporary (2014–2021)

density levels for Kittlitz’s and marbled murrelets are 60% and 37%

(respectively) lower than they were in the 1990’s, with combined

estimates on the order of 20,000 birds in June (Table 2). Our seasonal

A B C

FIGURE 6

Species correlations of modeled densities across (A) time, (B) space, and (C) the interaction of space and time. SHEAR, dark shearwaters; BLKI, black-
legged kittiwake; COMU, common murre; HOPU, horned puffin; KIMU, Kittlitz’s murrelet; MAMU, marbled murrelet; PIGU, pigeon guillemot; TUPU,
tufted puffin.
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patterns are consistent with previous work that documented murrelet

migrations away from coastal areas during post breeding molt in fall

(Piatt et al., 2021), and their return in winter and spring prior to

summer months when their densities are greatest (Arimitsu et al.,

2011; Kuletz et al., 2011). Similarly, recent large-scale declines of

murres are consistent with trends based on colony counts, where

numbers increased through the 1980’s and 1990’s but were severely

impacted by a large murre die-off in 2015-2016 ( Piatt et al., 2020) and

lingering effects of marine heatwaves on reproductive success and

population size at the colonies (Schoen et al., 2022).

Conclusions

The use of JDSDMs to estimate seabird distribution and seasonal

trends will facilitate risk assessments and planning in areas affected by

human activities such as oil and gas development, shipping, and

offshore wind and renewable energy. Although this application is

broadly relevant for informing marine ecosystem processes,

predicting habitat use, and aiding conservation of species in any

region that employs standard marine bird survey methodology, in this

paper we provide tools to inform assessments in Cook Inlet, Alaska

including: (1) gridded density predictions of monthly seabird

distribution and (2) species-specific abundance indices, their

seasonal trends, and uncertainty. In addition to providing a novel

method for producing fine-scale monthly distributions from

historical seabird data, we envision that these publicly available

products will aid in quantitatively supporting management and

conservation decisions.
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