40 research outputs found

    Proteinase-activated receptor-2: two potential inflammatory mediators of the gastrointestinal tract in Atlantic salmon

    Get PDF
    Proteinase-activated receptor 2 (PAR-2), activated by trypsin and other serine proteinases, is a key initiator of inflammatory responses in the intestine of mammals. Atlantic salmon fed diets with standard qualities of soybean meal (SBM) show enteritis of the distal intestine as well as increased activity of trypsin in both luminal contents and wall tissue. Luminal trypsin activity may possibly be involved in immune related disorders of the intestine also in Atlantic salmon via activation of PAR 2. In the present study our aim was to investigate if PAR-2 play a role in SBM induced enteritis. We performed multiple alignments based on nucleic acid sequences of PAR-2 from various animals available from public databases, and designed primers for use in cloning of the Atlantic salmon PAR-2 transcript. We further cloned and characterized the full length sequence of Atlantic salmon PAR-2 and investigated the expression in both early and chronic stages of SBM induced enteropathy. Two full length versions of PAR-2 cDNA were identified and termed PAR-2a and PAR-2b. Expression of the two PAR-2 transcripts was detected in all 18 tissues examined, but most extensively in the intestine and gills. A significant up-regulation in the distal intestine was observed for the PAR-2a transcript after 1 day feeding diets containing SBM. After 3 weeks of feeding, PAR-2a was down-regulated compared to the fish fed control diets. These findings may indicate that PAR-2a participates in inflammatory responses in both the early and later stages of the SBM enteropathy. In the chronic stages of the enteropathy, down-regulation of PAR-2a may indicate a possible desensitization of the PAR-2a receptor. Expression of PAR-2b was not altered in the first 7 days of SBM feeding, but a significant up regulation was observed after 3 weeks, suggesting a putative role in chronic stages of SBM induced enteritis. The expression differences of the two PAR-2 transcripts in the feed trials may indicate that they have different roles in the SBM induced enteritis

    Regulated expression of a transgene introduced on an oriP/EBNA-1 PAC shuttle vector into human cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequencing of the human genome has led to most genes being available in BAC or PAC vectors. However, limited functional information has been assigned to most of these genes. Techniques for the manipulation and transfer of complete functional units on large DNA fragments into human cells are crucial for the analysis of complete genes in their natural genomic context. One limitation of the functional studies using these vectors is the low transfection frequency.</p> <p>Results</p> <p>We have constructed a shuttle vector, pPAC7, which contains both the <it>EBNA-1 </it>gene and <it>ori</it>P from the Epstein-Barr virus allowing stable maintenance of PAC clones in the nucleus of human cells. The pPAC7 vector also contains the <it>EGFP </it>reporter gene, which allows direct monitoring of the presence of PAC constructs in transfected cells, and the <it>Bsr</it>-cassette that allows highly efficient and rapid selection in mammalian cells by use of blasticidin. Positive selection for recombinant PAC clones is obtained in pPAC7 because the cloning sites are located within the SacBII gene. We show regulated expression of the <it>CDH3 </it>gene carried as a 132 kb genomic insert cloned into pPAC7, demonstrating that the pPAC7 vector can be used for functional studies of genes in their natural genomic context. Furthermore, the results from the transfection of a range of pPAC7 based constructs into two human cell lines suggest that the transfection efficiencies are not only dependent on construct size.</p> <p>Conclusion</p> <p>The shuttle vector pPAC7 can be used to transfer large genomic constructs into human cells. The genes transferred could potentially contain all long-range regulatory elements, including their endogenous regulatory promoters. Introduction of complete genes in PACs into human cells would potentially allow complementation assays to identify or verify the function of genes affecting cellular phenotypes.</p

    A highly redundant BAC library of Atlantic salmon (Salmo salar): an important tool for salmon projects

    Get PDF
    BACKGROUND: As farming of Atlantic salmon is growing as an aquaculture enterprise, the need to identify the genomic mechanisms for specific traits is becoming more important in breeding and management of the animal. Traits of importance might be related to growth, disease resistance, food conversion efficiency, color or taste. To identify genomic regions responsible for specific traits, genomic large insert libraries have previously proven to be of crucial importance. These large insert libraries can be screened using gene or genetic markers in order to identify and map regions of interest. Furthermore, large-scale mapping can utilize highly redundant libraries in genome projects, and hence provide valuable data on the genome structure. RESULTS: Here we report the construction and characterization of a highly redundant bacterial artificial chromosome (BAC) library constructed from a Norwegian aquaculture strain male of Atlantic salmon (Salmo salar). The library consists of a total number of 305 557 clones, in which approximately 299 000 are recombinants. The average insert size of the library is 188 kbp, representing 18-fold genome coverage. High-density filters each consisting of 18 432 clones spotted in duplicates have been produced for hybridization screening, and are publicly available [1]. To characterize the library, 15 expressed sequence tags (ESTs) derived overgos and 12 oligo sequences derived from microsatellite markers were used in hybridization screening of the complete BAC library. Secondary hybridizations with individual probes were performed for the clones detected. The BACs positive for the EST probes were fingerprinted and mapped into contigs, yielding an average of 3 contigs for each probe. Clones identified using genomic probes were PCR verified using microsatellite specific primers. CONCLUSION: Identification of genes and genomic regions of interest is greatly aided by the availability of the CHORI-214 Atlantic salmon BAC library. We have demonstrated the library's ability to identify specific genes and genetic markers using hybridization, PCR and fingerprinting experiments. In addition, multiple fingerprinting contigs indicated a pseudo-tetraploidity of the Atlantic salmon genome. The highly redundant CHORI-214 BAC library is expected to be an important resource for mapping and sequencing of the Atlantic salmon genome

    A Highly Redundant BAC Library of Atlantic salmon (Salmo salar): An Important Tool for Salmon Projects

    Get PDF
    Background: As farming of Atlantic salmon is growing as an aquaculture enterprise, the need to identify thegenomic mechanisms for specific traits is becoming more important in breeding and management of the animal.Traits of importance might be related to growth, disease resistance, food conversion efficiency, color or taste.To identify genomic regions responsible for specific traits, genomic large insert libraries have previously provento be of crucial importance. These large insert libraries can be screened using gene or genetic markers in orderto identify and map regions of interest. Furthermore, large-scale mapping can utilize highly redundant libraries ingenome projects, and hence provide valuable data on the genome structure.Results: Here we report the construction and characterization of a highly redundant bacterial artificialchromosome (BAC) library constructed from a Norwegian aquaculture strain male of Atlantic salmon (Salmosalar). The library consists of a total number of 305 557 clones, in which approximately 299 000 are recombinants.The average insert size of the library is 188 kbp, representing 18-fold genome coverage. High-density filters eachconsisting of 18 432 clones spotted in duplicates have been produced for hybridization screening, and are publiclyavailable [1]. To characterize the library, 15 expressed sequence tags (ESTs) derived overgos and 12 oligosequences derived from microsatellite markers were used in hybridization screening of the complete BAC library.Secondary hybridizations with individual probes were performed for the clones detected. The BACs positive forthe EST probes were fingerprinted and mapped into contigs, yielding an average of 3 contigs for each probe.Clones identified using genomic probes were PCR verified using microsatellite specific primers.Conclusion: Identification of genes and genomic regions of interest is greatly aided by the availability of theCHORI-214 Atlantic salmon BAC library. We have demonstrated the library\u27s ability to identify specific genes andgenetic markers using hybridization, PCR and fingerprinting experiments. In addition, multiple fingerprintingcontigs indicated a pseudo-tetraploidity of the Atlantic salmon genome. The highly redundant CHORI-214 BAClibrary is expected to be an important resource for mapping and sequencing of the Atlantic salmon genome

    Novel Fusion of MYST/Esa1-Associated Factor 6 and PHF1 in Endometrial Stromal Sarcoma

    Get PDF
    Rearrangement of chromosome band 6p21 is recurrent in endometrial stromal sarcoma (ESS) and targets the PHF1 gene. So far, PHF1 was found to be the 3′ partner in the JAZF1-PHF1 and EPC1-PHF1 chimeras but since the 6p21 rearrangements involve also other chromosomal translocation partners, other PHF1-fusions seem likely. Here, we show that PHF1 is recombined with a novel fusion partner, MEAF6 from 1p34, in an ESS carrying a t(1;6)(p34;p21) translocation as the sole karyotypic anomaly. 5′-RACE, RT-PCR, and sequencing showed the presence of an MEAF6-PHF1 chimera in the tumor with exon 5 of MEAF6 being fused in-frame to exon 2 of PHF1 so that the entire PHF1 coding region becomes the 3′ terminal part of the MEAF6-PHF1 fusion. The predicted fusion protein is composed of 750 amino acids and contains the histone acetyltransferase subunit NuA4 domain of MEAF6 and the tudor, PHD zinc finger, and MTF2 domains of PHF1. Although the specific functions of the MEAF6 and PHF1 proteins and why they are targeted by a neoplasia-specific gene fusion are not directly apparent, it seems that rearrangement of genes involved in acetylation (EPC1, MEAF6) and methylation (PHF1), resulting in aberrant gene expression, is a common theme in ESS pathogenesis

    Low frequency of ESRRA-C11orf20 fusion gene in ovarian carcinomas.

    Get PDF
    The identification of recurrent gene fusions in common epithelial cancers--for example, TMPRSS2/ERG in prostate cancer and EML4/ALK in nonsmall cell lung carcinomas--has raised the question of whether fusion genes are pathogenetically important also in ovarian carcinomas. The first recurrent fusion transcript in serous ovarian carcinomas was reported by Salzman et al. in 2011, who used deep paired-end sequencing to detect the fusion gene ESRRA-C11orf20 in 10 out of 67 (15%) serous ovarian carcinomas examined, a finding that holds great promise for our understanding of ovarian tumorigenesis as well as, potentially, for new treatment strategies. We wanted to test how frequent the ESRRA/C11orf20 fusion is in ovarian carcinomas of all subtypes, and therefore examined a series of 230 ovarian carcinomas of which 197 were of the serous subtype and 163 of the 197 were of stages III and IV--that is, the very same carcinoma subset where the fusion transcript had been found. We performed PCR and high-throughput sequencing analyses in search of the fusion transcript. We used the same primers described previously for the detection of the fusion and the same primer combination, but found no ESRRA/C11orf20 fusion in our series. A synthetic DNA plasmid containing the reported ESRRA/C11orf20 fusion was included as a positive control for our PCR experiments. Data from high-throughput sequencing of 23 ovarian carcinomas were screened in search of alternative partner(s) for the ESRRA and/or C11orf20 gene, but none was found. We conclude that the frequency of the ESRRA/C11orf20 gene fusion in serous ovarian carcinomas of stages III and IV must be considerable less than that reported previously (0/163 in our experience compared with 10/67 in the previous study). At the very least, it seems clear that the said fusion cannot be a common pathogenetic event in this tumor type
    corecore