8 research outputs found

    Mechanisms for pneumococcal meningitis and a new vaccine platform to raise a serotype-independent protection in the host

    Get PDF
    Streptococcus pneumoniae is a highly relevant pathogenic bacterium, responsible for a large fraction of deaths and disease morbidity in the world. The pneumococcus remains the leading cause of life-threatening pneumonia, septicemia and meningitis beyond neonatal age, despite global implementation of vaccination programs. Due to its extraordinary adaptability, S. pneumoniae has developed evasion strategies against most therapeutic interventions. In addition to escaping vaccine conferred immunity, antibiotic resistance trends are continuously on the rise. The pneumococcal polysaccharide capsule is an important virulence factor with around 100 distinct capsular serotypes identified so far, that vary in invasiveness. Among other major virulence factors of the pneumococcus are the cytotoxin pneumolysin, pneumococcal pili, and adhesin factors PspA and PspC. Vaccine-induced pressure drives capsular switching, and acquisition of resistance genes is promoted by antimicrobial pressure, complicating treatment strategies. The clinical management of pneumococcal meningitis is particularly troublesome, which is reflected in persistently high rates of permanent neurological sequalae among survivors. Therefore, there is an urgent need to scrutinize the pathogenesis of invasive pneumococcal disease (IPD), to identify new adjunctive therapeutic or prophylactic targets, and improve clinical outcomes. The work presented in the thesis aims to contribute to an improved understanding of key virulence mechanisms in the development of pneumococcal meningitis. These include bacterial invasion of the brain, bacterial interactions with fundamental cellular components of the brain, and bacteria-induced disruption of the brain’s fluid dynamics. Moreover, we propose a new vaccine platform to prevent pneumococcal colonization and infection in a serotype-independent manner. Pneumococcal invasion of the brain through the blood-brain barrier, and the potential therapeutic effect of blocking the endothelial cell host receptors PECAM-1 and pIgR, was investigated in paper I. In combination with antibiotics, antibody blockade successfully prevented bacterial invasion of the brain, and protected the brain from damage, in a murine bacteremia-derived meningitis model. The feasibility to modulate host responses as adjunctive therapy was demonstrated. Bacteria-host communication between the pneumococcus and human neuronal cells was shown to occur directly and indirectly in paper II. Neuronal cell injury was induced by pneumolysin and pilus-I interactions with cytoskeletal β-actin. Inhibition of the interaction, using a β-actin antibody, partially protected against cellular damage. The pneumococcal-induced pathophysiology of the brain’s waste clearance system, the glymphatic system, and consequent neurofunctional damage, was characterized in paper III. A rat meningitis model, where bacteria were intracisternally administered together with a tracer dye, was employed, to study the accumulation of fluid and bacterial components in the brains CSF compartment. The findings of the study attest to the benefit of using lumbar drainage to alleviate intracranial pressure as adjunctive therapy in bacterial meningitis. Finally, in paper IV, pneumococcal vesicles were evaluated for their capacity to induce cross-protection against several pneumococcal serotypes, in a mouse immunization model. We found that the vesicles gave an excellent homologous and heterologous protection. The conserved lipoproteins MalX and PrsA were found to be the major components in the vesicles that conferred heterologous cross-protection. We suggest that vesicles represent promising novel vaccine targets to protect against pneumococcal diseas

    The Role of Microglia in Bacterial Meningitis: Inflammatory Response, Experimental Models and New Neuroprotective Therapeutic Strategies

    Get PDF
    Microglia have a pivotal role in the pathophysiology of bacterial meningitis. The goal of this review is to provide an overview on how microglia respond to bacterial pathogens targeting the brain, how the interplay between microglia and bacteria can be studied experimentally, and possible ways to use gained knowledge to identify novel preventive and therapeutic strategies. We discuss the dual role of microglia in disease development, the beneficial functions crucial for bacterial clearing, and the destructive properties through triggering neuroinflammation, characterized by cytokine and chemokine release which leads to leukocyte trafficking through the brain vascular endothelium and breakdown of the blood-brain barrier integrity. Due to intrinsic complexity of microglia and up until recently lack of specific markers, the study of microglial response to bacterial pathogens is challenging. New experimental models and techniques open up possibilities to accelerate progress in the field. We review existing models and discuss possibilities and limitations. Finally, we summarize recent findings where bacterial virulence factors are identified to be important for the microglial response, and how manipulation of evoked responses could be used for therapeutic or preventive purposes. Among promising approaches are: modulations of microglia phenotype switching toward anti-inflammatory and phagocytic functions, the use of non-bacterolytic antimicrobials, preventing release of bacterial components into the neural milieu and consequential amplification of immune activation, and protection of the blood-brain barrier integrity

    A comparative study of adjuvants effects on neonatal plasma cell survival niche in bone marrow and persistence of humoral immune responses

    Get PDF
    Funding Information: AP was a recipient of a doctoral study grant from the University of Iceland Research Fund (2015-18). This study was financially supported by grants from the Icelandic Research Fund (130675051-53), The University of Iceland Research Fund (2018-20) and the Landspitali Science Fund (A-2017-068, A-2017-069, A-2018-076, A-2018-077, A-2019-084). Publisher Copyright: Copyright © 2022 Aradottir Pind, Thorsdottir, Magnusdottir, Meinke, Del Giudice, Jonsdottir and Bjarnarson. Copyright © 2022 Aradottir Pind, Thorsdottir, Magnusdottir, Meinke, Del Giudice, Jonsdottir and Bjarnarson.The neonatal immune system is distinct from the immune system of older individuals rendering neonates vulnerable to infections and poor responders to vaccination. Adjuvants can be used as tools to enhance immune responses to co-administered antigens. Antibody (Ab) persistence is mediated by long-lived plasma cells that reside in specialized survival niches in the bone marrow, and transient Ab responses in early life have been associated with decreased survival of plasma cells, possibly due to lack of survival factors. Various cells can secrete these factors and which cells are the main producers is still up for debate, especially in early life where this has not been fully addressed. The receptor BCMA and its ligand APRIL have been shown to be important in the maintenance of plasma cells and Abs. Herein, we assessed age-dependent maturation of a broad range of bone marrow accessory cells and their expression of the survival factors APRIL and IL-6. Furthermore, we performed a comparative analysis of the potential of 5 different adjuvants; LT-K63, mmCT, MF59, IC31 and alum, to enhance expression of survival factors and BCMA following immunization of neonatal mice with tetanus toxoid (TT) vaccine. We found that APRIL expression was reduced in the bone marrow of young mice whereas IL-6 expression was higher. Eosinophils, macrophages, megakaryocytes, monocytes and lymphocytes were important secretors of survival factors in early life but undefined cells also constituted a large fraction of secretors. Immunization and adjuvants enhanced APRIL expression but decreased IL-6 expression in bone marrow cells early after immunization. Furthermore, neonatal immunization with adjuvants enhanced the proportion of plasmablasts and plasma cells that expressed BCMA both in spleen and bone marrow. Enhanced BCMA expression correlated with enhanced vaccine-specific humoral responses, even though the effect of alum on BCMA was less pronounced than those of the other adjuvants at later time points. We propose that low APRIL expression in bone marrow as well as low BCMA expression of plasmablasts/plasma cells in early life together cause transient Ab responses and could represent targets to be triggered by vaccine adjuvants to induce persistent humoral immune responses in this age group.Peer reviewe

    Children’s and adolescents’ rising animal-source food intakes in 1990–2018 were impacted by age, region, parental education and urbanicity

    Get PDF
    Animal-source foods (ASF) provide nutrition for children and adolescents’ physical and cognitive development. Here, we use data from the Global Dietary Database and Bayesian hierarchical models to quantify global, regional and national ASF intakes between 1990 and 2018 by age group across 185 countries, representing 93% of the world’s child population. Mean ASF intake was 1.9 servings per day, representing 16% of children consuming at least three daily servings. Intake was similar between boys and girls, but higher among urban children with educated parents. Consumption varied by age from 0.6 at <1 year to 2.5 servings per day at 15–19 years. Between 1990 and 2018, mean ASF intake increased by 0.5 servings per week, with increases in all regions except sub-Saharan Africa. In 2018, total ASF consumption was highest in Russia, Brazil, Mexico and Turkey, and lowest in Uganda, India, Kenya and Bangladesh. These findings can inform policy to address malnutrition through targeted ASF consumption programmes.publishedVersio

    Incident type 2 diabetes attributable to suboptimal diet in 184 countries

    Get PDF
    The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.8–14.4 million) incident T2D cases, representing 70.3% (68.8–71.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.0–27.1%)), excess refined rice and wheat intake (24.6% (22.3–27.2%)) and excess processed meat intake (20.3% (18.3–23.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.4–87.7%)) and Latin America and the Caribbean (81.8% (80.1–83.4%)); and lowest proportional burdens were in South Asia (55.4% (52.1–60.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally.publishedVersio

    The role of microglia in bacterial meningitis : inflammatory response, experimental models and new neuroprotective therapeutic strategies

    No full text
    Microglia have a pivotal role in the pathophysiology of bacterial meningitis. The goal of this review is to provide an overview on how microglia respond to bacterial pathogens targeting the brain, how the interplay between microglia and bacteria can be studied experimentally, and possible ways to use gained knowledge to identify novel preventive and therapeutic strategies. We discuss the dual role of microglia in disease development, the beneficial functions crucial for bacterial clearing, and the destructive properties through triggering neuroinflammation, characterized by cytokine and chemokine release which leads to leukocyte trafficking through the brain vascular endothelium and breakdown of the blood-brain barrier integrity. Due to intrinsic complexity of microglia and up until recently lack of specific markers, the study of microglial response to bacterial pathogens is challenging. New experimental models and techniques open up possibilities to accelerate progress in the field. We review existing models and discuss possibilities and limitations. Finally, we summarize recent findings where bacterial virulence factors are identified to be important for the microglial response, and how manipulation of evoked responses could be used for therapeutic or preventive purposes. Among promising approaches are: modulations of microglia phenotype switching toward anti-inflammatory and phagocytic functions, the use of non-bacterolytic antimicrobials, preventing release of bacterial components into the neural milieu and consequential amplification of immune activation, and protection of the blood-brain barrier integrity.Published versio

    Neuronal death in pneumococcal meningitis is triggered by pneumolysin and RrgA interactions with β-actin.

    No full text
    Neuronal damage is a major consequence of bacterial meningitis, but little is known about mechanisms of bacterial interaction with neurons leading to neuronal cell death. Streptococcus pneumoniae (pneumococcus) is a leading cause of bacterial meningitis and many survivors develop neurological sequelae after the acute infection has resolved, possibly due to neuronal damage. Here, we studied mechanisms for pneumococcal interactions with neurons. Using human primary neurons, pull-down experiments and mass spectrometry, we show that pneumococci interact with the cytoskeleton protein β-actin through the pilus-1 adhesin RrgA and the cytotoxin pneumolysin (Ply), thereby promoting adhesion and invasion of neurons, and neuronal death. Using our bacteremia-derived meningitis mouse model, we observe that RrgA- and Ply-expressing pneumococci co-localize with neuronal β-actin. Using purified proteins, we show that Ply, through its cholesterol-binding domain 4, interacts with the neuronal plasma membrane, thereby increasing the exposure on the outer surface of β-actin filaments, leading to more β-actin binding sites available for RrgA binding, and thus enhanced pneumococcal interactions with neurons. Pneumococcal infection promotes neuronal death possibly due to increased intracellular Ca2+ levels depending on presence of Ply, as well as on actin cytoskeleton disassembly. STED super-resolution microscopy showed disruption of β-actin filaments in neurons infected with pneumococci expressing RrgA and Ply. Finally, neuronal death caused by pneumococcal infection could be inhibited using antibodies against β-actin. The generated data potentially helps explaining mechanisms for why pneumococci frequently cause neurological sequelae

    Global, regional, and national consumption of animal-source foods between 1990 and 2018: findings from the Global Dietary Database

    Get PDF
    International audienceBackground:Diet is a major modifiable risk factor for human health and overall consumption patterns affect planetary health. We aimed to quantify global, regional, and national consumption levels of animal-source foods (ASF) to inform intervention, surveillance, and policy priorities.Methods:Individual-level dietary surveys across 185 countries conducted between 1990 and 2018 were identified, obtained, standardised, and assessed among children and adults, jointly stratified by age, sex, education level, and rural versus urban residence. We included 499 discrete surveys (91·2% nationally or subnationally representative) with data for ASF (unprocessed red meat, processed meat, eggs, seafood, milk, cheese, and yoghurt), comprising 3·8 million individuals from 134 countries representing 95·2% of the world population in 2018. We used Bayesian hierarchical models to account for differences in survey methods and representativeness, time trends, and input data and modelling uncertainty, with five-fold cross-validation.Findings:In 2018, mean global intake per person of unprocessed red meat was 51 g/day (95% uncertainty interval [UI] 48–54; region-specific range 7–114 g/day); 17 countries (23·9% of the world's population) had mean intakes of at least one serving (100 g) per day. Global mean intake of processed meat was 17 g/day (95% UI 15–21 g/day; region-specific range 3–54 g/day); seafood, 28 g/day (27–30 g/day; 12–44 g/day); eggs, 21 g/day (18–24 g/day; 6–35 g/day); milk 88 g/day (84–93 g/day; 45–185 g/day); cheese, 8 g/day (8–10 g/day; 1–34 g/day); and yoghurt, 20 g/day (17–23 g/day; 7–84 g/day). Mean national intakes were at least one serving per day for processed meat (≥50 g/day) in countries representing 6·9% of the global population; for cheese (≥42 g/day) in 2·3%; for eggs (≥55 g/day) in 0·7%; for milk (≥245 g/day) in 0·3%; for seafood (≥100 g/day) in 0·8%; and for yoghurt (≥245 g/day) in less than 0·1%. Among the 25 most populous countries in 2018, total ASF intake was highest in Russia (5·8 servings per day), Germany (3·8 servings per day), and the UK (3·7 servings per day), and lowest in Tanzania (0·9 servings per day) and India (0·7 servings per day). Global and regional intakes of ASF were generally similar by sex. Compared with children, adults generally consumed more unprocessed red meat, seafood and cheese, and less milk; energy-adjusted intakes of other ASF were more similar. Globally, ASF intakes (servings per week) were higher among more-educated versus less-educated adults, with greatest global differences for milk (0·79), eggs (0·47), unprocessed red meat (0·42), cheese (0·28), seafood (0·28), yoghurt (0·22), and processed meat (0·21). This was also true for urban compared to rural areas, with largest global differences (servings per week) for unprocessed red meat (0·47), milk (0·38), and eggs (0·20). Between 1990 and 2018, global intakes (servings per week) increased for unprocessed red meat (1·20), eggs (1·18), milk (0·63), processed meat (0·50), seafood (0·44), and cheese (0·14).Interpretation:Our estimates of ASF consumption identify populations with both lower and higher than optimal intakes. These estimates can inform the targeting of intervention, surveillance, and policy priorities relevant to both human and planetary health
    corecore