1,100 research outputs found

    Nitrogen Fertilizer and Irrigation Effects on Seed Yield and Oil in Camelina

    Get PDF
    Interest is growing in camelina (Camelina sativa L. Crantz) as a biofuel feedstock. However, there has been little camelina research in irrigated arid systems. A 2-yr field study in Maricopa, AZ, under an overhead sprinkler irrigation system determined the effects of 10 water levels (irrigation fraction 0.5–1.1) and five N fertilizer rates (38–150 kg N ha–1) on seed yield, seed oil content, and N use efficiency. Cultivar Robinson was planted in December 2012 and 2013. Nitrogen fertilizer (urea ammonium nitrate) was applied in three split applications. Irrigation amounts were from 125 to 380 mm, and in-season rain was 70 and 50 mm, in 2013 and 2014, respectively. Camelina seed yields were maximum at water level 7 (irrigation fraction 0.93) in 2013 at 1800 kg ha–1. Maximum seed yields were 1600 kg ha–1 at water level 6 (irrigation fraction 0.83) in 2014. These highest seed yields were achieved with 150 kg N ha–1 in both years. Oil content (maximum 41%) decreased with N rate but increased with water level. Seed N increased with N rate but decreased with irrigation level. Recovery efficiency of N fertilizer by camelina ranged from 12 to 72%. The results indicate that good high-oil camelina yields can be produced in the southwestern United States with 320 to 380 mm irrigation plus rain and N fertilizer rates of 150 kg N ha–1

    The time resolution of the St. Petersburg paradox

    Full text link
    A resolution of the St. Petersburg paradox is presented. In contrast to the standard resolution, utility is not required. Instead, the time-average performance of the lottery is computed. The final result can be phrased mathematically identically to Daniel Bernoulli's resolution, which uses logarithmic utility, but is derived using a conceptually different argument. The advantage of the time resolution is the elimination of arbitrary utility functions.Comment: 20 pages, 1 figur

    Proximal hyperspectral sensing and data analysis approaches for field-based plant phenomics

    Get PDF
    Field-based plant phenomics requires robust crop sensing platforms and data analysis tools to successfully identify cultivars that exhibit phenotypes with high agronomic and economic importance. Such efforts will lead to genetic improvements that maintain high crop yield with concomitant tolerance to environmental stresses. The objectives of this study were to investigate proximal hyperspectral sensing with a field spectroradiometer and to compare data analysis approaches for estimating four cotton phenotypes: leaf water content (Cw), specific leaf mass (Cm), leaf chlorophyll a+b content (Cab), and leaf area index (LAI). Field studies tested 25 Pima cotton cultivars grown under well-watered and water-limited conditions in central Arizona from 2010 to 2012. Several vegetation indices, including the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), and the physiological (or photochemical) reflectance index (PRI) were compared with partial least squares regression (PLSR) approaches to estimate the four phenotypes. Additionally, inversion of the PROSAIL plant canopy reflectance model was investigated to estimate phenotypes based on 3.68 billion PROSAIL simulations on a supercomputer. Phenotypic estimates from each approach were compared with field measurements, and hierarchical linear mixed modeling was used to identify differences in the estimates among the cultivars and water levels. The PLSR approach performed best and estimated Cw,Cm,Cab, and LAI with root mean squared errors (RMSEs) between measured and modeled values of 6.8%, 10.9%, 13.1%, and 18.5%, respectively. Using linear regression with the vegetation indices, no index estimated Cw,Cm,Cab, and LAI with RMSEs better than 9.6%, 16.9%, 14.2%, and 28.8%, respectively. PROSAIL model inversion could estimate Cab and LAI with RMSEs of about 16% and 29%, depending on the objective function. However, the RMSEs for Cw and Cm from PROSAIL model inversion were greater than 30%. Compared to PLSR, advantages to the physically-based PROSAIL model include its ability to simulate the canopy's bidirectional reflectance distribution function (BRDF) and to estimate phenotypes from canopy spectral reflectance without a training data set. All proximal hyperspectral approaches were able to identify differences in phenotypic estimates among the cultivars and irrigation regimes tested during the field studies. Improvements to these proximal hyperspectral sensing approaches could be realized with a high-throughput phenotyping platform able to rapidly collect canopy spectral reflectance data from multiple view angles

    Development and application of process-based simulation models for cotton production: a review of past, present, and future directions

    Get PDF
    The development and application of cropping system simulation models for cotton production has a long and rich history, beginning in the southeastern United States in the 1960's and now expanded to major cotton production regions globally. This paper briefly reviews the history of cotton simulation models, examines applications of the models since the turn of the century, and identifies opportunities for improving models and their use in cotton research and decision support. Cotton models reviewed include those specific to cotton (GOSSYM, Cotton2K, COTCO2, OZCOT, and CROPGRO-Cotton) and generic crop models that have been applied to cotton production (EPIC, WOFOST, SUCROS, GRAMI, CropSyst, and AquaCrop). Model application areas included crop water use and irrigation water management, nitrogen dynamics and fertilizer management, genetics and crop improvement, climatology, global climate change, precision agriculture, model integration with sensor data, economics, and classroom instruction. Generally, the literature demonstrated increased emphasis on cotton model development in the previous century and on cotton model application in the current century. Although efforts to develop cotton models have a 40-year history, no comparisons among cotton models were reported. Such efforts would be advisable as an initial step to evaluate current cotton simulation strategies. Increasingly, cotton simulation models are being applied by non-traditional crop modelers, who are not trained agronomists but wish to use the models for broad economic or life cycle analyses. While this trend demonstrates the growing interest in the models and their potential utility for a variety of applications, it necessitates the development of models with appropriate complexity and ease-of-use for a given application, and improved documentation and teaching materials are needed to educate potential model users. Spatial scaling issues are also increasingly prominent, as models originally developed for use at the field scale are being implemented for regional simulations over large geographic areas. Research steadily progresses toward the advanced goal of model integration with variable-rate control systems, which use real-time crop status and environmental information to spatially and temporally optimize applications of crop inputs, while also considering potential environmental impacts, resource limitations, and climate forecasts. Overall, the review demonstrates a languished effort in cotton simulation model development, but the application of existing models in a variety of research areas remains strong and continues to grow

    The ALMaQUEST Survey: The Molecular Gas Main Sequence and the Origin of the Star-forming Main Sequence

    Get PDF
    The origin of the star forming main sequence ( i.e., the relation between star formation rate and stellar mass, globally or on kpc-scales; hereafter SFMS) remains a hotly debated topic in galaxy evolution. Using the ALMA-MaNGA QUEnching and STar formation (ALMaQUEST) survey, we show that for star forming spaxels in the main sequence galaxies, the three local quantities, star-formation rate surface density (\sigsfr), stellar mass surface density (\sigsm), and the \h2~mass surface density (\sigh2), are strongly correlated with one another and form a 3D linear (in log) relation with dispersion. In addition to the two well known scaling relations, the resolved SFMS (\sigsfr~ vs. \sigsm) and the Schmidt-Kennicutt relation (\sigsfr~ vs. \sigh2; SK relation), there is a third scaling relation between \sigh2~ and \sigsm, which we refer to as the `molecular gas main sequence' (MGMS). The latter indicates that either the local gas mass traces the gravitational potential set by the local stellar mass or both quantities follow the underlying total mass distributions. The scatter of the resolved SFMS (σ∼0.25\sigma \sim 0.25 dex) is the largest compared to those of the SK and MGMS relations (σ∼\sigma \sim 0.2 dex). A Pearson correlation test also indicates that the SK and MGMS relations are more strongly correlated than the resolved SFMS. Our result suggests a scenario in which the resolved SFMS is the least physically fundamental and is the consequence of the combination of the SK and the MGMS relations

    Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach

    Get PDF
    <div><p>The associations between time spent in sleep, sedentary behaviors (SB) and physical activity with health are usually studied without taking into account that time is finite during the day, so time spent in each of these behaviors are codependent. Therefore, little is known about the combined effect of time spent in sleep, SB and physical activity, that together constitute a composite whole, on obesity and cardio-metabolic health markers. Cross-sectional analysis of NHANES 2005–6 cycle on N = 1937 adults, was undertaken using a compositional analysis paradigm, which accounts for this intrinsic codependence. Time spent in SB, light intensity (LIPA) and moderate to vigorous activity (MVPA) was determined from accelerometry and combined with self-reported sleep time to obtain the 24 hour time budget composition. The distribution of time spent in sleep, SB, LIPA and MVPA is significantly associated with BMI, waist circumference, triglycerides, plasma glucose, plasma insulin (all p<0.001), and systolic (p<0.001) and diastolic blood pressure (p<0.003), but not HDL or LDL. Within the composition, the strongest positive effect is found for the proportion of time spent in MVPA. Strikingly, the effects of MVPA replacing another behavior and of MVPA being displaced by another behavior are asymmetric. For example, re-allocating 10 minutes of SB to MVPA was associated with a lower waist circumference by 0.001% but if 10 minutes of MVPA is displaced by SB this was associated with a 0.84% higher waist circumference. The proportion of time spent in LIPA and SB were detrimentally associated with obesity and cardiovascular disease markers, but the association with SB was stronger. For diabetes risk markers, replacing SB with LIPA was associated with more favorable outcomes. Time spent in MVPA is an important target for intervention and preventing transfer of time from LIPA to SB might lessen the negative effects of physical inactivity.</p></div

    A randomised feasibility study to investigate the impact of education and the addition of prompts on the sedentary behaviour of office workers

    Get PDF
    Abstract Background Office workers have been identified as being at risk of accumulating high amounts of sedentary time in prolonged events during work hours, which has been associated with increased risk of a number of long-term health conditions. There is some evidence that providing advice to stand at regular intervals during the working day, and using computer-based prompts, can reduce sedentary behaviour in office workers. However, evidence of effectiveness, feasibility and acceptability for these types of intervention is currently limited. Methods A 2-arm, parallel group, cluster-randomised feasibility trial to assess the acceptability of prompts to break up sedentary behaviour was conducted with office workers in a commercial bank (n = 21). Participants were assigned to an education only group (EG) or prompt and education group (PG). Both groups received education on reducing and breaking up sitting at work, and the PG also received hourly prompts, delivered by Microsoft Outlook over 10 weeks, reminding them to stand. Objective measurements of sedentary behaviour were made using activPAL monitors worn at three time points: baseline, in the last 2 weeks of the intervention period and 12 weeks after the intervention. Focus groups were conducted to explore the acceptability of the intervention and the motivations and barriers to changing sedentary behaviour. Results Randomly generated, customised prompts, delivered by Microsoft Outlook, with messages about breaking up sitting, proved to be a feasible and acceptable way of delivering prompts to office workers. Participants in both groups reduced their sitting, but changes were not maintained at follow-up. The education session seemed to increase outcome expectations of the benefits of changing sedentary behaviour and promote self-regulation of behaviour in some participants. However, low self-efficacy and a desire to conform to cultural norms were barriers to changing behaviour. Conclusions Prompts delivered by Microsoft Outlook were a feasible, low-cost way of prompting office workers to break up their sedentary behaviour, although further research is needed to determine whether this has an additional impact on sedentary behaviour, to education alone. The role of cultural norms, and promoting self-efficacy, should be considered in the design of future interventions. Trial registration This study was registered retrospectively as a clinical trial on ClinicalTrials.gov (ID no. NCT02609282 ) on 23 March 2015

    Physical activity and maternal–fetal circulation measured by Doppler ultrasound

    Get PDF
    To examine the association of physical activity on maternal-fetal circulation measured by uterine and umbilical artery Doppler flow velocimetry waveforms
    • …
    corecore