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Discipline: Agronomy & Soils 36 

 37 

Abstract 38 

The development and application of cropping system simulation models for cotton production has 39 

a long and rich history, beginning in the southeastern United States in the 1960's and now expanded to 40 

major cotton production regions globally. This paper briefly reviews the history of cotton simulation 41 

models, examines applications of the models since the turn of the century, and identifies opportunities for 42 

improving models and their use in cotton research and decision support. Cotton models reviewed include 43 

those specific to cotton (GOSSYM, Cotton2K, COTCO2, OZCOT, and CROPGRO-Cotton) and generic 44 

crop models that have been applied to cotton production (EPIC, WOFOST, SUCROS, GRAMI, 45 

CropSyst, and AquaCrop). Model application areas included crop water use and irrigation water 46 

management, nitrogen dynamics and fertilizer management, genetics and crop improvement, climatology, 47 

global climate change, precision agriculture, model integration with sensor data, economics, and 48 

classroom instruction. Generally, the literature demonstrated increased emphasis on cotton model 49 

development in the previous century and on cotton model application in the current century. Although 50 

efforts to develop cotton models have a 40-year history, no comparisons among cotton models were 51 

reported. Such efforts would be advisable as an initial step to evaluate current cotton simulation 52 

strategies. Increasingly, cotton simulation models are being applied by non-traditional crop modelers, 53 

who are not trained agronomists but wish to use the models for broad economic or life cycle analyses. 54 

While this trend demonstrates the growing interest in the models and their potential utility for a variety of 55 

applications, it necessitates the development of models with appropriate complexity and ease-of-use for a 56 

given application, and improved documentation and teaching materials are needed to educate potential 57 

model users. Spatial scaling issues are also increasingly prominent, as models originally developed for 58 

use at the field scale are being implemented for regional simulations over large geographic areas. 59 

Research steadily progresses toward the advanced goal of model integration with variable-rate control 60 

systems, which use real-time crop status and environmental information to spatially and temporally 61 

optimize applications of crop inputs, while also considering potential environmental impacts, resource 62 

limitations, and climate forecasts. Overall, the review demonstrates a languished effort in cotton 63 

simulation model development, but the application of existing models in a variety of research areas 64 

remains strong and continues to grow. 65 

Keywords: agriculture, computer, cotton, model, simulation  66 
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1. Introduction 67 

Cotton (Gossypium hirsutum and Gossypium barbadense) is an important commodity crop 68 

globally, providing sources of fiber, feed, food, and potentially fuel for diverse industries. Cotton fiber is 69 

used in products ranging from textiles to paper, coffee filters, and fishing nets. Cottonseed meal and hulls 70 

are used mainly for ruminant livestock feed. Cottonseed oil is currently refined as a vegetable oil for 71 

human consumption and has potential as a biofuel. From 2008 to 2012, China was the top cotton producer 72 

and averaged 33.1 million bales annually (USDA-FAS, 2013), followed by India (25.1 million bales), the 73 

United States (14.7 million bales), Pakistan (9.3 million bales), Brazil (7.2 million bales), Uzbekistan (4.2 74 

million bales), and Australia (3.2 million bales). One bale contains 218 kg (480 lbs) of cotton fiber. In the 75 

2010-2011 growing season, average global cotton fiber yield was 757 kg ha-1 and ranged from 1681 kg 76 

ha-1 in Australia to 200 kg ha-1 in some resource limited countries. A main issue for cotton in the 77 

developed world is the high cost of production, and improvements in cotton production practices are 78 

needed to keep cotton economically competitive with other commodity crops and fiber sources. For 79 

cotton production to be sustainable, water and energy resource limitations must also be considered. These 80 

goals for improved cotton production can be realized with smarter irrigation and nitrogen (N) fertilizer 81 

management, better understanding of climate impacts on cotton yield, further advancement in cotton 82 

breeding and genetics, greater adoption of precision agriculture technologies, and increased knowledge of 83 

cotton genetics by environment by management (GEM) interactions. 84 

Many of the issues facing cotton industries can be better understood and perhaps mitigated by 85 

implementing process-based cropping system simulation models (Boote et al., 1996; Reddy et al., 1997a), 86 

which are important and powerful computer-based tools for guiding cotton management and research. 87 

Developers of these models synthesized the knowledge gained from decades of field, laboratory, and 88 

controlled-environment experiments and produced computer algorithms that simulate fundamental 89 

cropping system processes, including evapotranspiration (ET), soil water redistribution, nutrient 90 

dynamics, energy transfer, and crop growth and development. Past model applications include assessing 91 

irrigation and N management alternatives for cotton (Hearn and Bange, 2002), analyzing potential global 92 

warming impacts on cotton production (Reddy et al., 2002a), and forecasting seed cotton yield (seed plus 93 

fiber) from satellite remote sensing images (Hebbar et al., 2008). 94 

In the United States, early development and application of crop growth models was historically 95 

linked with the cotton industry. By the mid-1970's, fundamental equations were developed to describe 96 

cotton growth and development (Baker et al., 1972; McKinion et al., 1975; Wanjura et al., 1973), cotton 97 

plant N balance (Jones et al., 1974), and ET and soil water balance (Ritchie, 1972; Shirazi et al., 1976). 98 

Also, the effects of leaf angle and leaf area vertical distribution on light penetration and cotton canopy 99 

photosynthesis had been examined using computer models (Fukai and Loomis, 1976). Approaches for 100 
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simulating the development of cotton fruits, including squares, bolls, seed, and fiber, were investigated 101 

later (Jackson et al., 1988; Wanjura and Newton, 1981). Notably, these initial efforts led to the 102 

development of the GOSSYM simulation model (Table 1) and the accompanying CrOp MAnagement 103 

eXpert system (COMAX), which was used across the United States Cotton Belt to guide on-farm cotton 104 

management in the 1980's (McKinion et al., 1989; Whisler et al., 1986). 105 

In addition to GOSSYM/COMAX, other simulation models for cotton production systems were 106 

developed more recently (Table 1): Cotton2K (Marani, 2004), COTCO2 (Wall et al., 1994), OZCOT 107 

(Hearn, 1994), and CROPGRO-Cotton (Jones et al., 2003; Pathak et al., 2007; 2012). A variety of generic 108 

cropping system models, with reduced complexity for simulating a variety of crop types, were also 109 

recently evaluated for cotton production (Farahani et al., 2009; Sommer et al., 2008; Zhang et al., 2008). 110 

The models vary greatly in details and approaches for simulating various plant and soil processes and 111 

management practices, and none have yet reached their full potential. Landivar et al. (2010) provided an 112 

excellent review of strategies for physiological simulation of cotton growth and development; however, 113 

"it [was] not the purpose of this chapter to compare cotton models." Landivar et al. (2010) mainly 114 

described model development approaches and did not contrast existing cotton models or review recent 115 

advances in cotton model applications. 116 

The objective of this article was to review the state-of-the-art in development and application of 117 

computer simulation models for cotton production systems. Because of its comprehensive scope, cotton 118 

researchers with diverse interests and levels of expertise should find useful information herein. Given the 119 

trend for new cotton modeling efforts beyond traditional analyses of agronomic field experiments, the 120 

review also provides a resource for non-traditional and beginning modelers to learn about past and present 121 

cotton modeling efforts. A brief history is presented of cotton model development and applications in the 122 

last century, from 1960 to 2000. Descriptions and qualitative comparisons of existing cotton models are 123 

emphasized in this section. Next, the review describes cotton model development and applications in the 124 

current century thus far. Since year 2000, the literature has demonstrated a marked increase in articles that 125 

describe applications of the cotton models previously developed, and fewer articles focus on development 126 

of new models. Finally, considering the reviewed literature holistically, a perspective is provided on 127 

anticipated future challenges and opportunities for the application of process-based simulation models to 128 

cotton production. 129 

 130 

2. Past Directions: 1960-2000 131 

 132 

2.1. Overview of simulation approaches 133 
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The cotton models discussed herein are classified as mechanistic, dynamic, and deterministic. 134 

The models are mechanistic as they describe processes with some level of understanding (e.g., plant 135 

growth based on calculations of intercepted radiation). They are dynamic, because the time variable is 136 

explicit. Thus, the models use partial differential equations to calculate how quantities vary with time 137 

(e.g., transpiration and plant growth). The models are deterministic rather than stochastic, because the 138 

calculations are made without any associated probability distribution. Although most cotton simulation 139 

models share these characteristics, different model design strategies have been explored. For example, the 140 

cotton model of Plant et al. (1998) used qualitative categorical variables (e.g., HIGH, MODERATE, or 141 

LOW) rather than quantitative variables to describe plant and soil states. The coarseness of the Plant et al. 142 

(1998) model improved simulation robustness at the expense of precision, but the model was arguably 143 

less mechanistic and dynamic than traditional cotton models. Most cotton simulation models have 144 

simulated soil and plant processes explicitly and quantitatively in a mechanistic, dynamic, and 145 

deterministic fashion. 146 

Process-based crop models share a common goal of estimating crop yield by simulating the 147 

contribution of soil water, nutrient, and plant growth and developmental processes to the formation of 148 

harvestable plant products. However, the approaches used to simulate these processes vary widely among 149 

existing crop models (Tables 2 and 3; Landivar et al., 2010). To simulate plant development, many crop 150 

models use a growing degree-day concept, where measured air temperature is assessed in relation to 151 

known functions of crop development rate with air temperature. Simulation details, such as the number of 152 

development stages considered, the treatment of leaf appearance, and the development of yield 153 

components, vary widely among models (Table 2). Carbon (C) assimilation and biomass accumulation 154 

are commonly simulated as a function of measured solar irradiance, using simulated leaf area index (LAI) 155 

to calculate the fraction of photosynthetically active radiation intercepted by the crop canopy. Simulations 156 

of water, nutrient, and temperature stresses and atmospheric carbon dioxide (CO2) concentrations ([CO2]) 157 

may further adjust energy to biomass conversions. Approaches for representing plant stress factors vary 158 

widely among models. 159 

Perhaps the most important physiological difference among models is whether they use a 160 

radiation use efficiency approach to account for plant growth and maintenance respiration (Monteith, 161 

1977) or whether they explicitly simulate photosynthesis and respiration as independent processes (Boote 162 

and Pickering, 1994; Farquhar et al., 1980; McCree, 1974; Mutsaers, 1982). Models also differ in 163 

simulation details for leaf area expansion, stem elongation, organ growth, and yield components. To 164 

simulate the soil water balance, several crop models implement the 'tipping bucket' method of Ritchie 165 

(1972; 1998), while others use numerical methods to solve the soil water balance. Simulations of ET are 166 

conducted using a variety of methods with varying complexity and data requirements: Priestley and 167 
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Taylor (1972); FAO-56 Penman-Monteith (Allen et al., 1998); or surface energy balance. Approaches to 168 

simulate N dynamics are also variable, while some models do not simulate any nutrient effect on plant 169 

growth (Table 3). Models also vary in their consideration of management impacts on cotton production, 170 

including irrigation, fertilization, sowing date, tillage, and defoliation events (Table 4). The time steps of 171 

calculations also vary among models, but hourly or daily time steps are common (Table 1). Given the 172 

diverse approaches for simulating cotton production systems, it is not the objective of this review to claim 173 

one approach as superior to the other, but rather it is to summarize and contrast the approaches currently 174 

implemented in existing cotton models. The appropriateness of a given model will depend mainly on the 175 

specific application. 176 

 177 

2.2. Established crop simulation models for cotton 178 

 179 

2.2.1. GOSSYM 180 

The development, characteristics, and applications of the cotton model, GOSSYM, were 181 

previously described extensively (Baker et al., 1983; Hodges et al., 1998; Landivar et al., 2010; McKinion 182 

et al., 1989; Reddy et al., 1997a; 2002a). Briefly, GOSSYM uses mass balance principles to simulate 183 

water, C, and N processes in the plant and soil root zone. It requires environmental variables, such as 184 

solar irradiance, air temperature, precipitation, and wind, as well as information on soil physical 185 

properties and cultural practices, including variety-dependent parameters. The model estimates potential 186 

growth and developmental rates as a function of air temperature under optimum water and nutrient 187 

conditions, and it corrects the potential rates by the intensity of environmental stresses using 188 

environmental productivity indices (Baker et al., 1983; Reddy et al., 2008). Each day, the model simulates 189 

the birth and abscission of organs, their size and growth stage, and the intensity of stress factors. The user 190 

can assume certain future weather conditions (days, weeks, and years) to determine fiber yield estimates 191 

and impact of altered cultural practices on cotton maturity and fiber yield. 192 

The GOSSYM model consists of several subroutines for various aspects of crop production 193 

(Hodges et al., 1998) and biology (Reddy et al., 1997a). A unique aspect is its treatment of the soil 194 

(Lambert et al., 1976) and the processes therein, as they influence the plant’s physiological processes. In 195 

addition to plant and soil processes, an expert system known as COMAX was explicitly developed for the 196 

GOSSYM model (Hodges et al., 1998; Lemmon, 1986; McKinion et al., 1989).  197 

The concept and development of GOSSYM started in the late 1960’s with a meeting at the 198 

University of Arizona, sponsored by the Department of Agronomy and Agricultural Engineering (Baker 199 

et al., 1983; Hodges et al., 1998; Landivar et al., 2010; Reddy et al., 2002b). Significant contributions 200 

were made from several institutions (Baker et al., 1972; 1976; 1983; Hesketh and Baker, 1967; Hesketh et 201 
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al., 1971; 1972; Lambert et al., 1976; McKinion et al., 1975; Wanjura et al., 1973) in the years after that 202 

first meeting. 203 

With the construction of Soil-Plant-Atmosphere-Research facilities at several locations in the 204 

southeastern United States (Phene et al., 1978; Reddy et al., 2001), cotton physiological, growth, and 205 

developmental processes as affected by abiotic stress factors were quantified. Based on data from these 206 

facilities, algorithms were developed to improve the model's functionality and accuracy of simulation 207 

results (Marani et al., 1985; Reddy et al., 1995; 2000; 1993; 1997a, 1997b; 2001; 2003). In 1984, 208 

GOSSYM was first implemented on commercial cotton farms as a decision support system (DSS). Based 209 

on user requests, the COMAX interface was developed to facilitate its delivery to over 70 cotton farms 210 

across the United States Midsouth. By 1990, GOSSYM-COMAX had been implemented on over 300 211 

commercial farms (Ladewig and Taylor-Powell, 1989; Ladewig and Thomas, 1992). Extensive model 212 

validation efforts were conducted across the United States Cotton Belt (Boone et al., 1993; Fye et al., 213 

1984; Reddy, 1994; Reddy and Baker, 1988; 1990; Reddy and Boone, 2002; Reddy et al., 1985; Reddy et 214 

al., 1995; Staggenborg et al., 1996) and overseas (Gertsis and Symeonakis, 1998; Gertsis and Whisler, 215 

1998). Several modifications in the simulation procedures and model validation efforts using field data 216 

sets (Ali et al., 2004; Khorsandi and Whisler, 1996; Khorsandi et al., 1997) made the model applicable on 217 

many fronts, including farm management, economics, climate change, and policy issues (Doherty et al., 218 

2003; Landivar et al., 1983a; 1983b; Liang et al., 2012a, 2012b; McKinion et al., 1989; 2001; Reddy et 219 

al., 2002b; Wanjura and McMichael, 1989; Watkins et al., 1998; Xu et al., 2005). 220 

 221 

2.2.2. Cotton2K 222 

The Cotton2K model was developed by Dr. Avishalom Marani at the School of Agriculture of the 223 

Hebrew University of Jerusalem. The source code of Cotton2K is written in C++ and is available for free 224 

download (Marani, 2004). Cotton2K uses the process-based equations of GOSSYM (Baker et al., 1972; 225 

1983), and its history can be traced and linked to other cotton modeling efforts, including SIMCOTI 226 

(Baker et al., 1972), SIMCOTII (Jones et al., 1974), and CALGOS (Marani et al., 1992a; 1992b; 1992c). 227 

The main purpose of Cotton2K was to provide a more useful model for cotton production in arid, irrigated 228 

environments, such as the western United States and Israel. 229 

A general description of the history, main characteristics, scientific principles, and input 230 

requirements for Cotton2K are given by Marani (2004). The fundamental difference between Cotton2K 231 

and GOSSYM is the weather data requirement. While GOSSYM uses daily weather data, Cotton2K uses 232 

either measured hourly values of air temperature and humidity, wind speed, and shortwave irradiance or 233 

calculates hourly values from daily data using the method of Ephrath et al. (1996). The hourly weather 234 

values are used to calculate corresponding hourly water and energy balances; this allows the model to 235 
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more closely represent arid conditions and improves the model’s ability to more accurately calculate the 236 

water balance under irrigation (Marani, 2004). The main effect of these changes was to improve the 237 

accuracy in the calculation of ET, which also affected related variables. Further, the deviations created by 238 

using daily weather data time steps, rather than shorter time steps, was particularly important when hourly 239 

data followed non-linear diurnal patterns or where interactions of weather parameters were important in 240 

calculation of energy or water balances (i.e., non-linear diurnal wind speed patterns and/or interactions of 241 

wind speed and solar irradiance driving ET) (Ephrath et al., 1996). Other modifications in Cotton2K 242 

included a routine for sub-surface drip irrigation, updates to N mineralization and nitrification processes, 243 

calculation of N uptake using a Michaelis-Menten procedure, updates to plant growth and phenology 244 

functions, and energy balance equations to provide the temperatures of the soil surface and crop canopy 245 

(Marani, 2004). In summary, the addition of hourly weather input data allowed the calculation and the 246 

integration of differential equations on an hourly time-step for the processes of plant transpiration, soil 247 

water evaporation, soil water redistribution, heat and N fluxes, and the exchanges of energy and water at 248 

the soil-plant-atmosphere interfaces. These modifications greatly improved the utility and the 249 

applicability of Cotton2K for irrigation in arid environments. 250 

The main processes calculated in Cotton2K are related to the exchanges of energy and water 251 

between the soil, plant, and the environment. Processes are based on the principles of mass and energy 252 

conservation, whereby inputs and outputs to the system are balanced and accounted for as a function of 253 

time. The Cotton2K model was designed for specific management of agronomic inputs, including 254 

irrigation, N fertilizer, defoliation, and application of a plant growth regulator. Plant growth and 255 

development are based on the 'stress' theory (Grime, 1977; Craine, 2005), which includes stresses related 256 

to air temperature, water, C, and N. In this context, stress is a condition that restricts potential production 257 

due to suboptimal air temperatures and shortages of water and nutrients (Grime, 1977). Plant growth rates 258 

are related to ambient temperature using the concept of heat units (Wang, 1960; Peng et al., 1989). 259 

Potential growth rates of all plant organs, including roots, stems, leaf blades and petioles, and fruiting 260 

sites (squares, bolls, and seed cotton), are related to source-sink relations of C and water via stress factors. 261 

The stress factors between source and sink vary numerically from 1 (no stress) to 0 (severe stress). The C 262 

stress is related to net C assimilation (i.e., gross photosynthesis minus photorespiration and growth and 263 

maintenance respiration). The water stress is related to transpiration and transport of water as a function 264 

of leaf water potential. The N stress is based on supply and demand of N. In the soil, Cotton2K calculates 265 

rates of available N from urea hydrolysis, mineralization of organic N, nitrification of ammonium, 266 

denitrification of nitrate, and movement of soluble N. The model also calculates the N in plant organs 267 

(roots, stems, leaves, and fruiting sites) and, if supply does not meet requirements, an N stress factor is 268 
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calculated. All supply and demand functions related to temperature, water, C, and N are dynamic and thus 269 

their values change with time. 270 

The boundary conditions that define the one dimensional soil-plant-atmosphere system in 271 

Cotton2K are 2 m above and 2 m below the soil surface. The height (2 m) above the soil surface 272 

represents the screen-height where input weather data are measured, and the soil depth of 2 m represents 273 

the lower boundary of the soil profile. Required input weather data include shortwave irradiance, air 274 

temperature and humidity, wind speed, and rainfall. Cotton2K uses hourly weather input values; however, 275 

if not available, daily values of radiation and wind run, and maximum and minimum values of air 276 

temperature and humidity are used to calculate hourly values (Ephrath et al., 1996). For each irrigation 277 

event, the application method (sprinkler, furrow, and drip), timing (start and end), and applied depth are 278 

specified. The user defines the geometry of the soil profile by specifying the number and the thickness of 279 

each soil layer. At the onset of simulation, (i.e., time = 0), the user specifies for each soil layer a value of 280 

temperature, water, organic matter, N, and soil salinity. In addition, the soil layers are grouped into 281 

horizons, each having unique soil hydraulic properties. These properties define the relationship of soil 282 

water content to water potential and to hydraulic conductivity and are used in Richards' equation to 283 

calculate water movement in the soil profile. The user specifies the water table depth and the date and 284 

depth of each cultivation event. Other fixed parameter input values are location (latitude, longitude, and 285 

elevation), start and end of simulation period, date of planting and/or emergence, and field data (planting 286 

density and row spacing, including skip rows). Parameters describing individual cultivars affect 287 

phenology, growth, and development and ultimately impact the calculation of cotton fiber yield as 288 

suggested by Marani (2004) and shown by Booker (2013). The current version of Cotton2K has been 289 

tested for six cotton cultivars: Acala SJ-2, GC-510, Maxxa, Deltapine 61, Deltapine 77, and Sivon. 290 

The Cotton2K model can be used in a management mode for irrigation, N, defoliation, and 291 

application of a growth regulator. Under these options, Cotton2K is executed using predicted weather 292 

scenarios, and the user selects several options that include, for example, date of starting and ending 293 

irrigation, date of N fertilizer application, date of defoliation, and application of a plant growth regulator. 294 

Cotton2K outputs are recorded in text files, charts, and soil maps. The text files are a summary of all input 295 

and output values, detailed daily output, and plant maps. The charts plot the dynamics of key output 296 

variables with time, and the soil maps are two-dimensional plots of horizontal and vertical simulated 297 

values of soil water and nitrogen contents, temperature, and other variables, each as a function of time. 298 

The Cotton2K model has been directly and indirectly used and tested by many researchers. 299 

Directly, Cotton2K has been used by Yang et al. (2008) where the effect of pruning and topping was 300 

tested under field conditions and by Yang et al. (2010) and Nair et al. (2013) to optimize irrigation 301 

allocation under limited water conditions. Recently, Booker (2013) incorporated Cotton2K into a 302 
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landscape-scale model and applied it to cotton production across the major soil types of the Texas High 303 

Plains. Given the similarities of Cotton2K to GOSSYM and CALGOS models, indirectly some of the 304 

algorithms in Cotton2K have been evaluated for a wide range of soil and environmental conditions by 305 

Staggenborg et al. (1996), Clouse (2006), Baumhardt et al. (2009), and others. 306 

 307 

2.2.3. COTCO2 308 

The COTCO2 model simulates cotton physiology, growth, development, water use, biomass, and 309 

boll yield (Wall et al., 1994). Written in Fortran in a modular design, it is capable of simulating cotton 310 

crop responses to elevated [CO2] and potential concomitant changing climate variables, particularly 311 

temperature. Explicit physiological mechanisms are used to minimize reliance on empirical relationships, 312 

which are data dependent. The morphogenetic template concept in the KUTUN model (Mutsaers, 1984) 313 

and the physiological detail in an alfalfa model, ALFALFA (Denison and Loomis, 1989), served as 314 

prototypes for the COTCO2 model. 315 

Leaf physiology is central to simulating plant response to the environment in COTCO2 and 316 

consists of the following components, which are simulated hourly: 1) leaf energy balance to account for 317 

stomatal effects on leaf temperature, transpiration, and assimilation; 2) stomatal conductance coupled 318 

with leaf energy balance; 3) biochemical chloroplast CO2 assimilation; 4) apparent dark respiration for 319 

each organ type based on basal coefficients for the quantitative biochemistry of biosynthesis of existing 320 

phytomass (maintenance respiration) and that linked to growth (growth respiration); and 5) carbohydrate 321 

pool dynamics. 322 

Growth is simulated for individual meristem, stem segment, leaf blade, taproot, lateral root, and 323 

fruit (squares and bolls) organs. Potential growth is calculated, followed by the carbohydrate and N 324 

required to meet potential growth. Actual growth is based on potential growth, substrate availability, and 325 

water and temperature stress. Physiological age, which is the time-integrated value of developmental rate, 326 

places an upper limit on growth rate, and physiological age determines organ phenological state. The 327 

phenology of the simulated cotton plant does not develop based on calendar days. Rather, plant 328 

development and growth rates are based on a time-temperature running sum. The response of 329 

physiological time to temperature is based on an Arrhenius equation with both low and high temperature 330 

inhibition. At the reference temperature (e.g., 25°C), physiological time is equal to calendar days. Within 331 

the low and high temperature limits, physiological time proceeds faster and slower than calendar time at 332 

temperatures higher and lower than the reference temperature, respectively. 333 

The COTCO2 model can simulate cotton production over a broad environmental range, while 334 

providing the means to predict the impact of change in [CO2] and any associated potential climate change 335 
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on global cotton production. Ultimately, it could aid in the development of strategies to mitigate the 336 

adverse effects of global climate change, while optimizing those that are beneficial. 337 

 338 

2.2.4. OZCOT 339 

The structure of the OZCOT model has been described in detail by Hearn (1994) and Hearn and 340 

Da Roza (1985). It was developed using a 'top down' approach, meaning processes were simulated with 341 

only sufficient detail to provide reliable estimation of the impact of management and environment on 342 

cotton growth, development, and fiber yield. Simulation approaches were broadly mechanistic at the crop 343 

and plant level. The OZCOT model, which advances on a daily time step, is principally driven by air 344 

temperature and intercepted radiation, and it was built by linking a model of fruiting dynamics with a 345 

water balance model and simple N uptake model. In addition to validation using research experiments 346 

(Hearn, 1994), OZCOT has also been validated in commercial fields for both irrigated (Richards et al., 347 

2008) and rainfed cotton systems (Bange et al., 2005). 348 

The central component of OZCOT is the fruit production and survival subroutine (Hearn and Da 349 

Roza, 1985), which was used in the SIRATAC pest management DSS (Hearn and Bange, 2002). The 350 

rates of fruit production, fruit shedding, and growth of organs are governed by C supply. The OZCOT 351 

model tracks the total number of fruiting sites, squares, bolls, and open bolls by daily cohorts. A new 352 

cohort of squares is produced and subsequently developed through anthesis to maturity. Although 353 

OZCOT does not explicitly simulate the branching structure of the plant, aspects of morphology are 354 

implicit in the function that generates the number of squares (Hanan and Hearn, 2003). 355 

Carbon supply for a given day is estimated from intercepted light and a canopy-level 356 

photosynthetic rate (Baker et al., 1983), with respiration calculated as an empirical function of fruiting 357 

site count and mean air temperature. Light interception is estimated using Beer’s law, and leaf area is 358 

simulated using an empirical correlation between fruiting site production and leaf area (Jackson et al., 359 

1988). The rates of leaf expansion, photosynthesis, and fruiting are modulated by the supply of water and 360 

N and by waterlogging. 361 

The water balance in OZCOT is calculated using the Ritchie (1972) approach with a calibrated 362 

soil water extraction routine based on increasing supply with increasing depth of extraction over time. 363 

The OZCOT model does not maintain a dynamic soil N balance analogous to water, but uses a N uptake 364 

model. At the start of the season, potential N uptake is estimated based on soil N and fertilizer inputs 365 

(Constable and Rochester, 1988) and is reviewed daily to calculate a stress index. The stress index scales 366 

the rate of a process and is based on the ratio either between supply and demand for a resource or between 367 

the current and maximum value of a state variable. In addition to N, there are also stress indices for 368 

shortages of water and C. 369 
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The OZCOT model can be principally used in two modes: a strategic mode that generates 370 

simulations over multiple seasons using pre-determined management rules and historical climate data or a 371 

tactical mode that simulates specific management practices for a particular season. In both modes, daily 372 

values of rainfall (mm), maximum and minimum air temperature (degrees C), and solar irradiation (MJ m-
373 

2) are required. Relative humidity at 0900 h and wind run (km) can also be included for improved 374 

precision of daily ET estimates. Soil input information includes the number of soil layers and their depths, 375 

plant available water holding capacity, initial plant available water (in volumetric units), and average soil 376 

bulk density across layers. 377 

Agronomic inputs include parameters for different cotton cultivars, including leaf type (okra or 378 

palmate), squaring rate, maximum boll size and development rate, fiber percentage, background fruit 379 

retention (transgenic or non-transgenic), row spacing, plants per m of row, initial available soil N, 380 

irrigation rates and application dates, N rates and application dates, and planting dates. If a specific 381 

planting date or days when irrigation occurs is not provided, management rules are used to estimate these 382 

times in the strategic mode. 383 

The OZCOT model can simulate production in rainfed or limited irrigation cropping systems 384 

using ‘skip row’ configurations (Bange et al., 2005). These are row configurations that have entire rows 385 

missing from the planting configuration to increase the amount of soil water available to the crop at 386 

critical growth stages. The OZCOT model uses a modified soil water content stress index that accounts 387 

for the non-uniform distribution of the availability of soil water from the planted and non-planted rows 388 

(Milroy et al., 2004). 389 

Key outputs generated by the OZCOT model include seasonal estimates of fiber yield, yield 390 

components, dates of phenological stages, maximum LAI, N use, and water balance metrics such as 391 

effective rainfall and crop water use efficiency (WUE). A separate output file is also generated that 392 

provides daily within-season calculations of crop progress, stress indices, and resource use. 393 

The OZCOT model is the only supported cotton model in Australia that is used in decision 394 

support and research. Currently, the OZCOT model is the core component of the HydroLOGIC tactical 395 

and strategic cotton irrigation DSS (Richards et al., 2008). To refine simulations of in-season crop water 396 

use in HydroLOGIC, OZCOT was modified to accept additional measurements of soil water status and 397 

crop growth, such as LAI and fruit number. Other DSSs that have used OZCOT include CottBASE 398 

(http://cottassist.cottoncrc.org.au) for irrigated cotton systems and Whopper Cropper (Nelson et al. 2002) 399 

for rainfed cotton systems. Both are databases of pre-run OZCOT simulations based on historical climate 400 

data for various combinations of management options, soils, and regions.  401 

The crop growth component of OZCOT is used as the cotton module of the Agricultural 402 

Production Systems sIMulator (APSIM) modeling framework (Keating et al., 2003), which is used to 403 
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address farming systems issues (Carberry et al., 2009). Four main components form the basis of APSIM: 404 

a set of biophysical modules that simulate farming system processes; management modules allowing 405 

users to specify management rules; modules to facilitate handling of input and output data; and a 406 

simulation engine that drives the simulation process and passes messages between independent modules. 407 

Biophysical modules are available for a diverse range of crops, pastures, and trees within APSIM, and 408 

modules for soil water balances, N and P transformations, soil pH, erosion and a full range of 409 

management controls are also included. 410 

Until recently, OZCOT was written in Fortran and compiled as a dynamic link library. Currently 411 

called 'mvOZCOT', the OZCOT model has been rewritten in C# and was reengineered using the common 412 

modeling protocol of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) to 413 

allow more seamless integration with APSIM and other modeling frameworks (Moore et al., 2007). This 414 

has enabled OZCOT users to implement the model with other soil water and N modules. While OZCOT 415 

continues to be used as a research and management tool, current efforts to enhance its functionality 416 

include the addition of new algorithms to simulate fiber quality and climate change impacts. 417 

 418 

2.2.5. CSM-CROPGRO-Cotton 419 

The Cropping System Model (CSM)-CROPGRO-Cotton model (Jones et al., 2003; Pathak et al., 420 

2007) is implemented in the Decision Support System for Agrotechnology Transfer (DSSAT; 421 

Hoogenboom et al., 2012). The DSSAT system has a long history originating with the International 422 

Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) Project that was funded by the United 423 

States Agency for International Development from 1982 through 1993 (Uehara and Tsuji, 1989). The 424 

initial crop simulation models of DSSAT included the CERES-Wheat, CERES-Maize, SOYGRO, and 425 

PNUTGRO models. The SOYGRO, PNUTGRO, and BEANGRO models were later combined into a 426 

generic grain legume model, CROPGRO (Hoogenboom et al., 1992). To address cropping systems and 427 

especially crop rotations, the CSM was developed (Jones et al., 2003). The CSM model uses a single set 428 

of computer code for dynamic simulation of the soil water, inorganic soil N, and organic C and N 429 

balances (Gijsman et al., 2002; Godwin and Singh, 1998; Ritchie, 1998, Ritchie et al., 2009). Recently a 430 

soil phosphorus module was also added to CSM (Dzotsi et al., 2010). For the simulation of growth, 431 

development and ultimately yield for individual crops, different crop modules are being used, such as the 432 

CERES-Maize module for maize (Zea mays), CERES-Rice for rice (Oryza sativa; Ritchie et al., 1998) or 433 

the CROPGRO module for grain legumes (Boote et al., 1998). This allows for the continuous simulation 434 

of crop rotations, such as a soybean (Glycine max) and wheat (Triticum aestivum) rotation or a wheat and 435 

rice rotation (Bowen et al., 1998; Tojo Soler et al., 2011). 436 
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The CROPGRO module uses a daily time step for integration, starting at planting and ending at 437 

crop maturity or on the final harvest date. The differences among the individual crops or species are 438 

handled through external genotype files, as opposed to values or specific equations that are embedded in 439 

the code. There are three genotype files: one each for cultivar, ecotype, and species coefficients 440 

(Hoogenboom and White, 2003). The latter includes a range of temperature functions for development, 441 

photosynthesis, partitioning, and various other physiological functions. It also includes detailed 442 

composition parameters with respect to proteins, lipids, fiber, carbohydrates, and other properties of 443 

different plant components, including leaves, stems, roots, and reproductive structures. This approach 444 

assumes that the underlying plant physiological processes of each crop are similar, but the interaction of 445 

genetics with environment and management is different. 446 

The original DSSAT systems did not include a model for fiber crops. Because of the importance 447 

of cotton in the southeastern United States, especially as part of common rotations with peanut (Arachis 448 

hypogaea), there was a need for the development of a comprehensive cotton model. Rather than 449 

developing a new set of code, the decision was made to use the CROPGRO module as a template. The 450 

emphasis was to obtain detailed physiological information to define the functions and parameters for the 451 

species file and experimental data for initial model calibration and evaluation. The CSM-CROPGRO-452 

Cotton model was developed through a collaborative effort among scientists at the University of Florida 453 

and the University of Georgia (Pathak et al., 2007). Because of the existing infrastructure of DSSAT, the 454 

cotton model could easily be added to DSSAT without creating different utilities for data input and 455 

application programs. 456 

Similar to the other DSSAT crop simulation models, the CSM-CROPGRO-Cotton model requires 457 

environmental data, crop management, and genetic information as inputs (Hunt et al., 2001). Required 458 

environmental measurements include daily weather data for maximum and minimum air temperatures, 459 

solar irradiance, precipitation, and soil profile data. Required soil data include soil surface characteristics, 460 

such as slope, color, albedo, soil drainage, and descriptions of a one-dimensional profile, including lower 461 

limit of plant extractable water (LL), drained upper limit (DUL), saturated soil water content (SAT), bulk 462 

density, organic C, and total soil N. Recently, a new feature was added to the CSM models that allows 463 

input of [CO2] from an external file, which is based on the CO2 values measured at the long-term CO2 464 

monitoring site on Mauna Loa in Hawaii. Crop management practices include planting date; plant density 465 

and row spacing; planting depth; dates and amounts of irrigation application; dates, amounts and type of 466 

fertilizer application; and dates, types, and depths of tillage. Environmental modifications, including 467 

climate change modifications, can be entered in the environmental modification section of the crop 468 

management file. 469 
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As stated previously, the genetic information is provided in three data files. The species file is 470 

associated with a specific crop and is part of the core model development and calibration. Therefore, end 471 

users should not modify parameters in the species file. The cultivar parameter file specifies 18 cultivar-472 

specific parameters for each cultivar. These include coefficients that describe the time from emergence to 473 

flowering, time from flowering to first boll and first seed, time from first seed to physiological maturity, 474 

maximum single leaf photosynthetic rate, single leaf size, specific leaf area, individual seed size, fraction 475 

of seed cotton weight over total green boll weight, and oil and protein composition of the seeds. The 476 

cultivar file that is distributed with DSSAT includes a few cultivars for which the cultivar parameters 477 

have already been defined, including those for the example experimental files that are distributed with 478 

DSSAT. In general, however, users must calibrate their cultivar parameters using a set of measured data 479 

from either experiments or variety trials (Pathak et al., 2012). The ecotype file includes 17 parameters that 480 

define the unique characteristics of a group of cultivars, such as a short season versus a long season 481 

cultivar, and they normally will not change among a group of similar cultivars. 482 

In CSM-CROPGRO-Cotton, the overall integration of differential equations occurs on a daily 483 

time step. The CSM is written in Fortran (Thorp et al., 2012), and the software code includes different 484 

sections for model initialization, calculation of the rate variables, integration of the equations, and update 485 

of the state variables. Both daily and seasonal output routines are available (Jones et al., 2003). The model 486 

is initiated at the start of simulation, which can occur at or prior to planting. At this point, the initial or 487 

boundary conditions are set, especially with respect to initial soil water content, inorganic soil N, soil 488 

organic C, and residue remaining from the previous crop. If the model is started prior to planting, only the 489 

soil processes are simulated. When planting occurs, the crop growth module is initiated and vegetative 490 

development is simulated. Internally, both the vegetative and reproductive development processes are 491 

calculated on an hourly basis while integration occurs at a daily level. Hourly ambient temperature is 492 

calculated internally based on the maximum and minimum daily air temperature. In parallel to crop 493 

development, photosynthesis is simulated on an hourly basis based on light interception of a hedgerow 494 

canopy, and integration occurs on a daily basis (Boote and Pickering, 1994). The model accounts for 495 

maintenance respiration based on current total biomass, for growth respiration based on partitioning to the 496 

different plant organs, including roots, stems, leaves, bolls, and seed cotton, and for the composition of 497 

each organ. 498 

During vegetative growth, partitioning to roots, leaves, and stems is a function of the 499 

development stage and is source-driven. However, once reproductive development has started, 500 

partitioning is sink-driven based on the requirements for carbohydrates for the reproductive structures, 501 

including the bolls. Any remaining carbohydrates that are not used for growth of the reproductive 502 

structures can be used for further growth of the vegetative structures. Once flowering has started, the 503 
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model accounts for the number of flowers that are formed on a given day, called clusters. This system is 504 

maintained through the entire reproductive process, allowing for the abortion of flowers, squares, and 505 

bolls if insufficient carbohydrates are available for reproductive growth. The priority of the carbohydrate 506 

distribution is based on the status of the cohorts; the ones that were formed first have the highest priority 507 

for carbohydrates and the ones that were formed last have the lowest priority. During reproductive 508 

growth, remobilization of N from senesced leaves and petioles can also occur in order to support 509 

reproductive growth. Most of the growth, development, and partitioning processes have their own 510 

temperature response functions that are defined in the species file. 511 

Drought stress is represented by two different stress factors: one that affects the turgor-based 512 

growth processes and another that affects photosynthesis and growth processes. Drought stress occurs 513 

when the potential demand for water lost through transpiration and soil water evaporation is higher than 514 

the amount of water that can be supplied by the soil through the root system (Anothai et al., 2013). 515 

Evaporative demand is calculated using the Priestley-Taylor equation, which requires daily solar 516 

irradiance and maximum and minimum air temperatures as input (Priestley and Taylor, 1972). An option 517 

is also available to use the Penman-Monteith equation for calculating potential ET. The soil water balance 518 

is based on the tipping bucket approach for a one-dimensional soil profile (Ritchie, 1972; 1998). Each soil 519 

horizon or computational soil layer is characterized by the LL, DUL, and SAT, which can be calculated 520 

based on soil texture and bulk density using utilities provided with DSSAT. The daily potential ET 521 

demand is calculated first, and the potential water supply for root uptake is based on the soil water content 522 

of each layer, the root distribution, and a root resistance factor. If the potential supply is greater than the 523 

potential demand, the supply is set equal to the demand, and the associated processes are updated. If the 524 

demand is greater than the supply, transpiration and soil water evaporation are reduced to the simulated 525 

supply, and drought stress factors are calculated based on the difference between potential demand and 526 

potential supply. 527 

The CSM-CROPGRO-Cotton model includes a detailed soil and plant N balance. Although the 528 

original CROPGRO model included N fixation, the modular structure of CSM allows for individual 529 

modules to be turned on or off (Jones et al., 2003). A detailed description of the soil N balance is given by 530 

Godwin and Singh (1998), which is the same for all crop modules of the CSM. Soil N includes a myriad 531 

of processes that are calculated for each soil horizon or computational layer for the transformation of 532 

organic N to inorganic N in the form of nitrate and ammonium. For the calculation of the processes 533 

associated with soil organic C and N, there are two options. One is the original model developed by 534 

Godwin and Singh (1998), and the other is an advanced approach based on CENTURY (Gijsman et al., 535 

2002). The latter approach is especially suitable for low-input systems or for determining the soil C 536 

balance associated with soil C sequestration. 537 
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Because of the generic structure of the CROPGRO model, the CROPGRO-Cotton module 538 

benefits from other model features that were previously added to CROPGRO. One such feature is the 539 

generic coupling points that emulate the potential impact of pests and diseases on crop growth and 540 

development (Boote et al., 2008; 2010; 1983). These coupling points allow for the removal of tissue of 541 

the various organs, a modification of leaf area, a reduction in the availability of carbohydrates, and 542 

various others that are specified in a crop specific pest input file. The actual removal or changes are 543 

provided through a time-series input file. Ortiz et al. (2009) used this option to study the impact of 544 

southern root-knot nematodes on biomass growth and seed cotton yield. 545 

Most of the applications of the CSM-CROPGRO-Cotton model have been conducted in the 546 

southeastern United States, including the determination of irrigation water use in Georgia (Guerra et al., 547 

2007), the impact of climate variability and El Niño/La Niña Southern Oscillation (ENSO) on seed cotton 548 

yield under different cotton management options (Garcia y Garcia et al., 2010; Paz et al., 2012), 549 

sensitivity to solar irradiance (Garcia y Garcia et al.; 2008) and other inputs (Pathak et al., 2007), and crop 550 

insurance (Cabrera et al., 2006). Applications beyond the United States have been limited, except for a 551 

climate change application in Cameroon (Gérardieux et al., 2013) and a study of irrigation strategies in 552 

Australia (Cammarano et al., 2012). 553 

The CSM-CROPGRO-Cotton model is included in DSSAT (Hoogenboom et al., 2012). The most 554 

recent version of DSSAT can be requested from the DSSAT Foundation web site (www.DSSAT.net) at 555 

no cost. Utility programs are available within DSSAT for entering experimental and environmental data, 556 

as well as measured data, for model calibration and evaluation. DSSAT also includes special application 557 

programs for crop sequence or rotation analyses and for seasonal analyses that include economic 558 

components. The source code for the model is available upon request. 559 

 560 

2.2.6. Generic crop models 561 

Several generic crop models, which simplify crop growth routines for applicability to a variety of 562 

crops, have also been developed, and limited reports are available for the use of such models in cotton. 563 

The Environmental Policy Integrated Climate (EPIC) model, originally called the Erosion-Productivity 564 

Impact Calculator (Williams et al., 1984), simulates the impact of climate and management on soil 565 

erosion, water quality, and crop production. The generic crop model in EPIC (Williams et al., 1989) is 566 

currently parameterized for approximately 80 crops. Evaluations of the EPIC model have been conducted 567 

for cotton systems in Georgia (Guerra et al., 2004) and Texas (Ko et al., 2009a). The Simple and 568 

Universal CROp growth Simulator (SUCROS; Van Ittersum et al., 2003) models daily canopy CO2 569 

assimilation for potential production and includes a tipping bucket soil water balance routine with 570 

Penman ET. Zhang et al. (2008) modified SUCROS (SUCROS-Cotton) to simulate 'cut-out', fruit 571 
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dynamics, fruit abscission, single boll weight, and fiber yield for cotton. The model was evaluated for a 572 

cotton system in China. Another Wageningen crop model, WOrld FOod STudies (WOFOST; Van Diepen 573 

et al., 1989; Van Ittersum et al., 2003), is used for generic crop growth simulations in the Soil-Water-574 

Atmosphere-Plant model (SWAP; Kroes et al., 2008), which simulates vadose zone transport of water and 575 

solutes. Crop yield in SWAP can also be computed using a simplified crop growth algorithm (Doorenbos 576 

and Kassam, 1979). The GRAMI model (Maas, 1993a; b; c) was originally developed to estimate growth 577 

and yield of gramineous crops such as wheat, maize, and sorghum (Sorghum bicolor). The model was 578 

specifically designed to accept remote sensing data inputs for improving the accuracy of its crop growth 579 

simulation. Ko et al. (2005) modified the original GRAMI model to simulate growth and fiber yield of 580 

non-stressed cotton. The Root Zone Water Quality Model (RZWQM; Ma et al., 2012) originally 581 

incorporated a generic crop growth model but now includes the CSM crop modules (Jones et al., 2003), 582 

specifically the CROPGRO-Cotton model for cotton systems. CropSyst (Stöckle et al., 2003) is a daily 583 

time-step cropping system model that simulates water and N balances, crop growth and development, 584 

residue recycling, erosion by water, and salinity in response to climate, soils, and management. Sommer 585 

et al. (2008) recently evaluated CropSyst for cotton in Uzbekistan. 586 

 587 

2.3 Historic applications of cotton models 588 

In the previous century, cotton simulation models were used to assess irrigation and N fertilizer 589 

management strategies and to understand the effects of climate variability on cotton fiber yield. Many of 590 

these early efforts were based on the GOSSYM model (McKinion et al., 1989). Comparisons of 591 

GOSSYM-simulated crop water use with field measurements were an important step to evaluate the 592 

model for irrigation management purposes (Asare et al., 1992; Staggenborg et al., 1996). The Australian 593 

model, OZCOT, was used to make irrigation management decisions in relation to water supply (Dudley 594 

and Hearn, 1993a; Hearn, 1992). To characterize N impacts on cotton production, GOSSYM was used to 595 

manage N fertilization events for a field study in South Carolina (Hunt et al., 1998), to evaluate N 596 

fertilizer recovery and residual soil N for cotton systems in Mississippi (Stevens et al., 1996), and to 597 

assess the effect of N fertilization rate and timing on cotton fiber yield over a long-term weather record in 598 

west Texas (Wanjura and McMichael, 1989). Ramanarayanan et al. (1998) used the EPIC model to 599 

optimize N fertilization management in Oklahoma while considering N recovery in cotton fiber yield and 600 

N loss to the environment. 601 

Using GOSSYM, Landivar et al. (1983a) examined effects of the 'okra-leaf' trait on cotton fruit 602 

abscission and fiber yield. Under favorable N conditions, it appeared that a slight yield advantage with the 603 

okra-leaf trait was the result of improved light interception. However, under less favorable conditions, 604 

okra-leaf restricted LAI, which reduced yields. In a second paper (Landivar et al., 1983b), photosynthetic 605 
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rate, specific leaf weight, and leaf longevity were varied. Greater photosynthetic rate increased fiber yield, 606 

but if increased photosynthesis was achieved through greater specific leaf weight (thicker leaves), no 607 

yield benefit occurred. Extending leaf longevity appeared more promising for increasing yield, but the 608 

model did not deal with possible tradeoffs between leaf longevity and processes such as N remobilization. 609 

Due to concerns of declining cotton fiber yield over several decades, GOSSYM was used to 610 

examine climate effects on cotton fiber yield at several locations across the United States Cotton Belt 611 

(Reddy and Baker, 1990; Reddy et al., 1990; Wanjura and Barker, 1988). Weather variables were shown 612 

not to be a driver of fiber yield declines, but increasing ozone level may have reduced fiber yields in 613 

Phoenix, AZ and Fresno, CA (Reddy et al., 1989). Small increases (10%) in fiber yield due to elevated 614 

CO2 were found when soil N levels were sufficient. Dudley and Hearn (1993b) used OZCOT to evaluate 615 

El Niño effects on irrigated cotton systems in Namoi, Australia. Other early applications of the GOSSYM 616 

model included an economic evaluation of alternative desiccant application strategies (Watkins et al., 617 

1998) and an assessment of N fertilizer recommendations in the context of precision agriculture 618 

(McCauley, 1999). Exploration of the link between crop simulation models and canopy spectral 619 

reflectance indices was also an early priority in cotton research (Wiegand et al., 1986). Within-season 620 

calibration of crop growth models using remote sensing data was originally described by Maas (1988a; 621 

1988b) and later implemented in GRAMI. In this calibration procedure, within-season estimates of actual 622 

crop growth, such as LAI or ground cover, were obtained from remote sensing data. The model 623 

parameters and initial conditions were then iteratively adjusted to minimize the difference between 624 

simulated crop growth and the measured growth from remote sensing data (Maas, 1993a; b; c). Finally, 625 

Larson and Mapp (1997) used the COTTAM model (Jackson et al., 1988) to estimate cotton production 626 

responses and net revenue to various management inputs. The simulation results were then used to 627 

evaluate the performance of cotton cultivars and to assess planting, irrigation, and harvest decisions under 628 

risk. These studies laid the foundation for cotton modeling applications in the new century. 629 

 630 

3. Present Directions: 2000-2013 631 

3.1. Recent development of cotton models 632 

Studies on the application of cotton simulation models after year 2000 vastly outnumbered the 633 

studies reporting new model developments. However, there are a few recent and notable accomplishments 634 

in the development of simulation models for cotton. The AquaCrop model, supported by the Food and 635 

Agriculture Organization (FAO) of the United Nations, is a new generic crop model for simulating yield 636 

response to water management (Raes et al., 2009; Steduto et al., 2009). This effort resulted in a simulation 637 

model, based on plant physiology and soil water balance, that replaced previous FAO publications for 638 

estimating crop productivity in relation to water supply. In a short time, the model has been used for a 639 
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number of irrigation management studies in cotton, discussed in the next section, and in other crops. 640 

Pachepsky et al. (2009) developed and parameterized the new WALL model for cotton, which simulates 641 

individual leaf transpiration with emphasis on water movement within the leaf. Finally, Liang et al. 642 

(2012a) developed a GOSSYM-based, geographically distributed cotton growth model that has been 643 

coupled with the Climate-Weather Research Forecasting Model (Skamarock et al., 2005) for studying the 644 

effects of changing climate on cotton production. 645 

The literature demonstrates a significant research thrust toward cotton simulation model 646 

development in China, the world's leading cotton producer. Ma et al. (2005) conducted field studies at 647 

four locations in China and developed a simulation model for cotton development and fruit formation. 648 

Zhu et al. (2007) designed a web-based DSS for crop management that included process-based simulation 649 

models for four crops, including cotton. Li et al. (2009) developed a model for simulating boll maturation, 650 

seed growth, and oil and protein content of cottonseed. The model was calibrated and evaluated using 651 

experimental data sets from two locations in China. Zhao et al. (2012) focused on cotton fiber production 652 

and developed a model for simulating cotton fiber length and strength based on air temperature, solar 653 

irradiance, and N effects. 654 

Another noteworthy direction of research is the recent development of higher-dimensional 655 

models that simulate cotton canopy and root architecture. Coelho et al. (2003) used principles from 656 

GOSSYM and DSSAT-CSM to develop a model for simulation of horizontal and vertical distributions of 657 

cotton root growth at the field scale. Similarly, simulation of three-dimensional cotton root growth was 658 

investigated by Zhang and Li (2006) in China. Hanan and Hearn (2003) linked a model of cotton plant 659 

morphogenesis and architecture with OZCOT. The combined models allocated flower buds to assigned 660 

positions on the plant, and water, N, and C stresses controlled fruit growth and abortion. Jallas et al. 661 

(2009) combined a mechanistic model of crop growth and development with a three-dimensional model 662 

of plant architecture. Together, the two models produced an animated visualization of cotton growth for 663 

one or several cotton plants. Alarcon and Sassenrath (2011) analyzed digital images of cotton canopies 664 

and developed a dynamic model to simulate changes in cotton leaf number and leaf size during the 665 

growing season. These studies evidence a move toward simulation models that consider the influence of 666 

plant architecture on cotton growth, a characteristic that is not considered in most existing cotton models. 667 

 668 

3.2. Recent applications of cotton models 669 

3.2.1. Crop water use and irrigation management 670 

3.2.1.1. North American cotton production 671 

Several cotton simulation models, including Cotton2K, CSM-CROPGRO-Cotton, EPIC, 672 

GOSSYM, and GRAMI, were implemented for water-related research in North America since 2000. 673 
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Researchers have used these models to assess crop water demand and as a tool for cotton irrigation 674 

scheduling. The models were sometimes integrated with other models and software to increase their 675 

utility and effectiveness. 676 

Baumhardt et al. (2009) simulated fiber yield using GOSSYM for a 40-year period at Amarillo, 677 

Texas and used these data to analyze the impact of irrigation depth, irrigation duration, and initial soil 678 

water content on WUE and fiber yield of cotton. At lower initial moisture content, fiber yield and WUE 679 

increased with increasing irrigation depth, while at higher initial soil water content, WUE was lower for 680 

the higher irrigation depth although fiber yield was higher. They also reported that, with low irrigation 681 

water availability, concentrating the irrigation water to a subset of the field area could increase cotton 682 

fiber yield. 683 

The CSM-CROPGRO-Cotton model was evaluated for simulating cotton growth and 684 

development under different irrigation regimes in Georgia and was found to be a promising tool for 685 

irrigation scheduling (Suleiman et al., 2007). Simulations of ET were compared with field experimental 686 

data from Griffin, Georgia to evaluate the FAO-56 crop coefficient procedure for irrigation management 687 

in deficit irrigated cotton production. Root mean squared errors between measured and simulated ET 688 

ranged from 2.5 to 3.5 mm d-1, and model efficiency statistics were less than 0.28. These results indicate 689 

potential for further refinement of the model's ET simulation. 690 

Guerra et al. (2004) evaluated the EPIC model to simulate cotton fiber yield and irrigation 691 

demand in Georgia. The model simulated cotton fiber yield and irrigation requirements with root mean 692 

squared deviations of 0.29 t ha-1 and 75 mm, respectively. The model performance for cotton was better 693 

than for soybean and peanut. The EPIC model was also used to compare simulated crop water 694 

requirements for cotton, peanut, and corn with the actual irrigation amounts applied by farmers in Georgia 695 

(Guerra et al., 2005). This study revealed that EPIC was useful for assessing on-farm irrigation water 696 

demand. Guerra et al. (2007) used the CSM-CROPGRO-Cotton model to simulate irrigation applications 697 

for individual fields and then used kriging to estimate the spatial distribution of the irrigation water use 698 

for cotton in Georgia. The technique enabled estimation of water use at spatial scales more suitable to 699 

inform policy makers. 700 

Nair et al. (2013) evaluated Cotton2K for the Texas High Plains by simulating cotton fiber yield 701 

for a 110-year period at Plainview, Texas. Sixty-eight different irrigation treatments were simulated to 702 

analyze the production and profitability impacts of partitioning a center pivot irrigated cotton field into 703 

irrigated and dryland areas. By irrigating only a subset of the field area, cotton fiber yield and profitability 704 

were increased. The benefit was higher when available irrigation water was low and in low rainfall years. 705 

Ko et al. (2006) used a modified version of GRAMI, capable of within-season calibration using 706 

remotely sensed crop reflectance data, to model water-stressed cotton growth at Lubbock, Texas. Even 707 
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though the model adequately simulated cotton growth under deficit irrigation, its performance was 708 

unsatisfactory at higher irrigation regimes. Ko et al. (2009b) used data from field trials conducted in 709 

Uvalde, Texas to calibrate the radiation use efficiency and the light interception coefficient of the EPIC 710 

crop model. The calibrated model simulated field conditions with more accuracy and hence could be a 711 

better tool to manage irrigation water resources. 712 

Evett and Tolk (2009) reviewed nine papers that used cropping system simulation models to 713 

simulate yield and WUE of four crops, including cotton. All the models in these studies simulated WUE 714 

with considerable accuracy under well-watered conditions, but performed poorly under water stress. Crop 715 

growth models are important components of web-based DSSs, which can be used by crop managers for 716 

irrigation scheduling decisions (Fernandez and Trolinger, 2007). 717 

 718 

3.2.1.2. Australian cotton production 719 

The Australian cotton model, OZCOT (Hearn, 1994), is commonly used for irrigation water 720 

management research and decision support in Australia. It was used extensively to assess potential and 721 

risk of productivity and value of improvements in WUE across all Australian cotton production regions at 722 

the field scale (e.g., Hearn, 1992). The need for these assessments was associated with considerable 723 

reductions in water allocations and climate variability, including severe droughts. These investigations 724 

have also included assessments of seasonal climate forecasts to improve risk quantification (e.g., Bange et 725 

al., 1999). Today much of this information is delivered in databases of pre-run OZCOT simulations, 726 

based on historical climate data for various combinations of management options, soils, regions, and 727 

seasonal forecasts (CottBASE; http://cottassist.cottoncrc.org.au/). Cammarano et al. (2012) used a 728 

calibrated CSM-CROPGRO-Cotton model to undertake similar assessments for research purposes. 729 

In parallel to the use of OZCOT for research, a DSS named ‘HydroLOGIC’ was developed to 730 

calibrate the OZCOT model using available weather, soil water, fruit load and leaf area data for irrigation 731 

scheduling (Hearn and Bange, 2002; Richards et al., 2008). Irrigation timing was assessed by varying 732 

target soil water deficits for triggering irrigations and then by simple user optimization of fiber yield and 733 

water use estimates generated by OZCOT outputs. Simulations of fiber yield and water use were based on 734 

potential growth determined by OZCOT and historical climate records for the remainder of the season. 735 

HydroLOGIC can also be used in a strategic mode which enables users to explore the fiber yield and 736 

water productivity of irrigation management practices (pre- and post-season) under different weather 737 

patterns using long-term climate data. In this mode, schedules are user-defined and can irrigate the crop 738 

when the soil-water deficit reaches a set level, where the first and final irrigation dates are determined by 739 

square and boll development. 740 
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Recent advances in irrigation management have included the development of a framework 741 

‘VARIwise’ that develops and simulates site-specific irrigation control strategies (McCarthy et al., 2010). 742 

VARIwise divides fields into spatial subunits based on databases for weather, soil, and plant parameters 743 

to better account for field variability. The OZCOT model is used in two capacities in VARIwise: 1) to 744 

simulate the performance of the control strategies and 2) to calculate the irrigation application that 745 

achieves a desired performance objective (e.g., maximized bale yield or water productivity). In the first 746 

option, industry standard irrigation management strategies are tested, which apply irrigation to fill the soil 747 

profile. In the second option, VARIwise executes the calibrated crop model with different irrigation 748 

volumes over a finite horizon (e.g., five days) to determine which irrigation volumes and timing achieves 749 

the desired performance objective (e.g., maximize bale yield or water productivity) as calculated by the 750 

model. The optimal combination is implemented and this procedure is repeated daily to determine the 751 

timing of the next irrigation event and the site-specific irrigation volumes. An automatic model 752 

calibration procedure for soil water, vegetation, and fruit load was developed to minimize the error 753 

between the measured and simulated soil and plant responses (McCarthy et al., 2011). A genetic 754 

algorithm was used to refine the soil and plant parameters that characterized cotton development. 755 

Evaluation of VARIwise has shown improvements in irrigation WUE for center pivot irrigated 756 

cotton (McCarthy et al., 2010) and surface irrigation. The field implementation of VARIwise for surface 757 

irrigation includes irrigation hydraulics to determine the control actions (inflow rate and cut-off time) 758 

required to achieve the appropriate irrigation distribution along the furrow as determined by the control 759 

strategies. This further improves irrigation efficiencies. McCarthy et al. (2013) reviewed the use of crop 760 

models for advanced process control of irrigation and argued that process-based simulation models 761 

perform better than crop production functions. Significant opportunity remains to further enhance the 762 

VARIwise system by linking the predictive functionalities of HydroLOGIC, which is focused on crop 763 

growth performance, with the improved irrigation practice recommendations generated by VARIwise. 764 

On-farm water storage and distribution are limiting factors of the irrigation decision making 765 

process for cotton production. The APSIM framework incorporates water storage and has enabled the 766 

exploration of irrigation management options that rely on effluent water or opportunistic capture of 767 

overland flow as water sources (Carberry et al., 2002a). To provide probabilistic forecasts of on-768 

allocation and off-allocation water, catchment models and seasonal climate forecasts have been 769 

implemented, and the simulated water supply was used with a cotton simulation model to determine 770 

seasonal water requirements and cotton bale yield (Power et al., 2011a; 2011b). The gross margins, water 771 

requirements, and subsequent bale yields were then used to evaluate different cropping areas with 772 

different water availability and management paradigms. Alternatively, the irrigation events were 773 

scheduled when the OZCOT-simulated soil water deficit reached a set limit or when OZCOT maximized 774 
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bale yield (Ritchie et al., 2004). Then, a gross margin model was developed using the seasonal climate 775 

forecasts, estimated bale yield, and water application for the given water supply. The resulting bale yield, 776 

water and crop production costs, and crop price were provided for each year of the simulation. 777 

With current water reform actions in the Australian states of Queensland and New South Wales, 778 

water supply was calculated using seasonal stream flow forecasts from the Australian Bureau of 779 

Meteorology (Power et al., 2011b) and the Integrated Quantity Quality Model (IQQM), a river flow and 780 

water use hydrological model (Ritchie et al., 2004). The calculations can be used to estimate water 781 

availability for input into crop models. In these applications, OZCOT was used to determine the optimal 782 

planting area and water requirements for different planting areas according to the calculated volume of 783 

water at sowing (Power et al., 2011b). 784 

 785 

3.2.1.3. Asian cotton production 786 

Asia is home to several major cotton producing countries in the world, including China, India, 787 

Pakistan, Kazakhstan, and Uzbekistan. Irrigated cotton production in these countries relies mostly on 788 

traditional water management using surface irrigation practices. Nevertheless, several studies applied 789 

cotton simulation models for improving water management strategies in these Asian countries. Yang et al. 790 

(2010) used the Cotton2K model for estimating the irrigation water requirements for cotton in the North 791 

China Plain using 20 years of agronomic, hydrologic, and climate data. On average, irrigated cotton 792 

production accounted for 8% of the total water requirements in that region. Singh et al. (2006) evaluated 793 

water management strategies at various spatial and temporal scales using the SWAP model in an 794 

agricultural district in Northern India. The simulation results indicated that seed cotton yield and water 795 

productivity could be improved by ensuring an adequate water supply during the kharif (summer) season. 796 

The SWAP model was also used by Qureshi et al. (2011) to determine irrigation amounts for cotton 797 

grown in the Syrdarya province of Uzbekistan. Results demonstrated that an irrigation application of 2500 798 

m3 ha-1 produced an optimal seed cotton yield of 3000 kg ha-1 under the current climatic conditions with a 799 

water table depth of 2 m. Buttar et al. (2012) used a calibrated CropSyst model for studying the impact of 800 

global warming on seed cotton yield and water productivity of Bt cotton grown under semi-arid 801 

conditions in North India. Their results showed that total ET and crop water productivity decreased with 802 

an increase in air temperature from 28° to 32° C. 803 

 804 

3.2.1.4. Mediterranean cotton production 805 

Irrigation water management simulation studies in the Mediterranean region have mostly used the 806 

AquaCrop, CropWat, and SWAP models. While using the SWAP model to evaluate the performance of 807 

the Menemen Left Bank irrigation system, located at the tail end of the River Gediz in western Turkey, 808 
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Droogers et al. (2000) determined that the cotton irrigation requirement was about 1000 mm, and water 809 

productivity, expressed in terms of seed cotton yield per amount of water depleted from the soil, was 810 

maximized at an irrigation amount of 600 mm. Ismail and Depeweg (2005) also studied water 811 

productivity and cotton production in relation to water supply under continuous flow and surge flow 812 

irrigation methods in short fields of clay and sandy soils in Egypt using the CropWat model (FAO, 2013). 813 

Their analysis indicated that surge flow irrigation is an efficient tool either to produce the same yield with 814 

less water than in continuous flow or to produce higher yields than continuous flow when using the same 815 

gross irrigation supply. 816 

Garcia-Vila et al. (2009) determined the optimum level of applied irrigation water for cotton 817 

production in southern Spain under several climatic and agricultural policy scenarios using AquaCrop. 818 

After calibrating the model with data from four experiments in the Cordoba Province, functions of seed 819 

cotton yield versus applied irrigation were developed for different scenarios, and an economic 820 

optimization procedure was applied. Maximum profits occurred when irrigation amounts were between 821 

540 and 740 mm for the conditions at the study area, depending on the climatic scenario. However, profits 822 

remained close to the maximum (above 95%) for applied irrigation water levels exceeding 350 mm. 823 

Accurate simulation of crop yield under various irrigation regimes (full and deficit irrigation) is 824 

important to optimize irrigation under limited availability of water resources. Farahani et al. (2009) 825 

evaluated AquaCrop for cotton under full (100%) and deficit (40%, 60%, and 80% of full) irrigation 826 

regimes in the hot, dry, and windy Mediterranean environment of northern Syria. AquaCrop simulated 827 

seed cotton yields within 10% of the measured yields for the 40% and 100% irrigation regimes, while the 828 

errors increased to 32% for the 60% and 80% irrigation regimes. Simulations of ET, biomass, and soil 829 

water for the four irrigation regimes were particularly promising given the simplicity of the AquaCrop 830 

model and its limited parameterization. AquaCrop was also used to study seed cotton yield responses to 831 

deficit irrigation for a three-year (2007-2009) field experiment conducted in the southeast of Damascus, 832 

Syria (Hussein et al., 2011). Drip irrigation was used for cotton management under full and deficit 833 

irrigation (80%, 65%, and 50% of full irrigation). Simulations of seed cotton yields were within 6% of the 834 

measurements. However, the model overestimated WUE under water-deficit conditions. 835 

 836 

3.2.2. Nitrogen dynamics and fertilizer management 837 

Over application of N and other fertilizers on farmlands not only increases input costs but also 838 

causes excessive vegetative growth and delayed maturity in cotton. Excess N fertilizer can also 839 

contaminate surface water and groundwater and can increase nitrous oxide emissions from the soil. 840 

Cotton simulation models that include soil processes help assess impacts of fertilizer management, 841 

including application rates, method, and timing, on nutrient dynamics and water quality. Reddy et al. 842 
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(2002b) reviewed the use of GOSSYM to assess the impact of fertilization on cotton productivity, 843 

evaluate N dynamics as influenced by fertilizer application rates, and investigate the effect of N fertilizer 844 

application timing on cotton fiber yield. In general, GOSSYM overestimated fertilizer N recovery by 845 

plants, which was attributed to the inability of the model to simulate mineralization and immobilization 846 

processes or ammonia volatilization losses from the soil or the plants (Boone et al., 1993). 847 

Braunack et al. (2012) examined the effect of cotton planting date and cultivar selection on N use 848 

efficiency in cotton farming systems in Australia through field experiments and OZCOT model 849 

simulations. From the field experiments conducted over two years at Narrabri in New South Wales, they 850 

found that there was no difference in N use efficiency between two cotton cultivars: CSX6270BRF and 851 

Sicot 70BRF. They also found that the N use efficiency was not statistically decreased if planting 852 

occurred within 30 days from the normal target planting date of 15 October. The OZCOT simulations 853 

using 53 seasons (1957 to 2010) of climate data for long, medium, and short cotton growing regions in 854 

New South Wales and Queensland indicated that the N use efficiency was relatively constant over 855 

planting dates from 30 September to 30 October in the medium and short season areas and from 30 856 

September to 30 November in the long season areas, and decreased steeply thereafter. 857 

The soil N dynamics and seed cotton yields under varying N rates for cotton in the Khorezm 858 

region in Uzbekistan were simulated by Kienzler (2010) using the generic cotton routine within the 859 

CropSyst model. The simulated plant N uptake was higher than the applied fertilizer for all treatments up 860 

to the N fertilizer rate of 160 kg ha-1 and increased with higher N fertilizer amounts to a maximum of 214 861 

kg N ha-1 for a fertilizer rate of 250 kg N ha-1. Simulated crop production under farmers’ practice was not 862 

N-limited when more than 80 kg N ha-1 was applied. Hence, while maintaining the total amount of N 863 

fertilizer within 120 to 250 kg N ha-1, changing the timing or number of applications did not improve seed 864 

cotton yields. The simulations also indicated that increasing seed cotton yields without increasing N 865 

losses was possible when water supply better matched demand. 866 

The EPIC model was used by Kuhn et al. (2010) to estimate cotton fiber yields as a function of 867 

fertilizer application rates (ranging from 0 to 300 kg N ha-1) at the regional scale, by dividing the Upper 868 

Oueme basin in Benin, West Africa into 2550 crop response units, which were quasi-homogenous with 869 

respect to land use, soil, and climate. The outputs of the crop simulations for different N application rates 870 

were then used to establish yield response functions, which were finally integrated to an economic model 871 

to simulate the effects of tax exemptions on fertilizer use, crop yields, food balances, and use of land 872 

resources for the most important crops of the region, including cotton. 873 

Chamberlain et al. (2011) used DAYCENT, a C and N cycling model, to simulate N dynamics 874 

under cotton production and then employed the simulation results to assess the environmental impacts of 875 

land conversion from cotton to switchgrass in the southern United States. Long-term simulations showed 876 
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a reduction of N in runoff (up to 95%) for conversion from cotton to switchgrass at N application rates of 877 

0–135 kg N ha-1. They concluded that the model could more accurately simulate ‘relative differences’ 878 

rather than ‘absolute values’ for each cropping system. Using RZWQM, Abrahamson et al. (2006) 879 

simulated nitrate leaching from tile drains under conventional and no-tillage management practices in 880 

cotton production and rye (Secale cereale) cover cropping practices in a Cecil soil (kaolinitic, thermic, 881 

Typic Kanhapludult) in Georgia. However, the model was unable to simulate the pattern of nitrate 882 

transport in these soils, which led to large differences between simulated and measured values of leached 883 

nitrate (62 and 73 kg ha-1 for conventional tillage and no-till, respectively). The authors stated that the ion 884 

exchange equations in the RZWQM were included only for the major cations and not for anions adsorbed 885 

onto soil, and this might have resulted in the poor simulation of nitrate leachate losses. 886 

Recently, Shumway et al. (2012) tested the new Nitrogen Loss and Environmental Assessment 887 

Package (NLEAP) for its ability to simulate N dynamics for different cropping systems, including cotton, 888 

in three different locations in the Arkansas Delta. Simulations by the NLEAP showed that the model 889 

simulated the effects of management on residual soil nitrate, and it could be used as a tool to quickly 890 

evaluate management practices and their effects on potential N losses from cropped lands. 891 

 892 

3.2.3. Genetics and crop improvement 893 

The ability of crop models to simulate the interactive effects of plant traits, environment, and 894 

management makes such models attractive tools for crop improvement (White, 1998). Models find 895 

application both in simulating how specific traits impact yield and in analyzing how variability in 896 

production environments impact yield. While models are often proposed as tools for analyzing genotype 897 

by environment responses in support of breeding (e.g., Chapman et al., 2003; White, 1998), no examples 898 

were found where a cotton model was used to characterize the target population of environments or to 899 

analyze the environmental effects in breeding nurseries or varietal tests. One constraint may be that cotton 900 

simulation models lack sufficient genetic and physiological detail to describe cultivar differences in traits 901 

such as canopy temperature. Gene-based modeling is one avenue to strengthen the genetics and 902 

physiology of models, but it requires understanding of the genetic control of traits of interest (Bertin et al., 903 

2010; White and Hoogenboom, 2003). Until gene-based modeling goals are realized, model inversion 904 

techniques may be useful to estimate crop traits of varieties in large field trials, where crop sensors are 905 

deployed for field-based high-throughput phenotyping (White et al., 2012). 906 

 907 

3.2.4. Climatology 908 

Since crop development is driven by weather, an important application of cotton models is to 909 

analyze the impact of climatological patterns on production. Fernandez and Trolinger (2007) described a 910 
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web-based DSS that provides easy access to weather network data and numerical tools that simulate 911 

cotton responses to environmental conditions in south Texas. A heat unit approach was used for crop 912 

development, while crop height, LAI, and canopy cover were simulated using empirical equations. To use 913 

models for large-scale spatially distributed simulations, reliable weather data is often unavailable, 914 

particularly for solar radiation and precipitation. Therefore, researchers have sought alternative ways to 915 

derive such data. Richardson and Reddy (2004) used seven solar radiation models and four temporal 916 

averaging schemes to estimate solar irradiance, and cotton production simulations were evaluated at ten 917 

locations across the United States using the solar irradiance data in GOSSYM. Cotton fiber yield 918 

estimation accuracy depended on solar irradiance estimation accuracy, but location and management 919 

practice (irrigated versus rainfed) also impacted the simulation results. Although the radiation models 920 

estimated solar irradiance and fiber yield well, the combination of minimum and maximum air 921 

temperatures, rainfall, and wind speed performed best for simulation of solar irradiance and fiber yield at 922 

all locations. Garcia y Garcia et al. (2008) compared the effects of measured and generated solar 923 

irradiance on simulations of cotton, maize, and peanut crops in Georgia using the CSM. Simulations of 924 

total ET, aboveground biomass, and seed cotton yield were similar for generated and measured solar 925 

radiation. They concluded that generated solar radiation data could be reliably used as input to cotton 926 

simulation models in locations where measured data were not available. 927 

Cotton simulation models have also been used to study the effect of cyclical climate variations on 928 

cotton production, particularly the ENSO. Garcia y Garcia et al. (2010) studied the spatial variability of 929 

seed cotton yield and WUE of cotton grown in the southeastern United States as related to ENSO phases. 930 

Seed cotton yield and WUE of rainfed cotton were differentially affected by ENSO, and seed cotton yield 931 

was differentially affected by rainfall, air temperature, and solar irradiance within ENSO phase. 932 

Simulated seed cotton yield for rainfed cotton was higher during La Niña than during El Niño and neutral 933 

years, ranging from 3044 to 3304 kg ha-1 during El Niño years, from 2950 to 3267 kg ha-1 during neutral 934 

years, and from 2891 to 3383 kg ha-1 during La Niña years. Also, simulated seed cotton yield of rainfed 935 

cotton showed a stronger spatial dependence during El Niño and neutral years than during La Niña years. 936 

Paz et al. (2012) examined the ENSO effect on cotton fiber yields in Georgia for various planting dates at 937 

three spatial levels: county, crop reporting district, and region. Using CROPGRO-Cotton, fiber yields 938 

were simulated for 97 counties and 38 to 107 years, depending on county, each with nine planting dates 939 

within the planting window of 10 April through 6 June. Fiber yields were separated by ENSO phase, and 940 

analyses showed different results regarding the ENSO effect. According to county level analyses, ENSO 941 

had little and spatially less consistent effects, but the effect became more evident at larger spatial scales. 942 

According to regional level analysis, the fiber yield difference among ENSO phases was minimal for 943 

average planting dates, but substantial if planting date deviated from the average. In the northern Murray 944 
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Darling Basin, Australia, the impacts of ENSO phases on precipitation patterns were used to develop 945 

seasonal climate forecasts for the region (Ritchie et al., 2004). To test the outcome of irrigators using 946 

climate forecasts to schedule irrigations, OZCOT simulations provided cotton bale yield responses to 947 

climate-based irrigation management over a long-term weather record. 948 

Liang et al. (2012b) implemented a geographically distributed GOSSYM model to simulate 949 

United States cotton fiber yield responses over a long-term climate record from 1979 to 2005. The model 950 

simulated long-term mean cotton fiber yield within 10% of measurements at a scale of 30 km across the 951 

United States Cotton Belt, and the model responded appropriately to regional climate variation. The study 952 

was an important precursor to using the geographically distributed GOSSYM model for study of cotton 953 

responses to future climate scenarios. However, to use cotton models for future climate change scenarios, 954 

the weather inputs for air temperature, radiation, wind speed, and precipitation must be obtained from 955 

future climate models. These climate models, for now, provide monthly data, rather than the daily inputs 956 

required by most models. Reddy et al. (2002a) developed a method to create daily future weather files by 957 

modifying daily current weather assuming that changes in daily weather parameters remain constant for 958 

each month. The monthly mean maximum and minimum air temperature changes were added to current 959 

daily measurements and the change fractions for precipitation, solar irradiance, and wind speed were 960 

multiplied by current daily measurements to generate a 30-year record of daily future weather. This 961 

methodology retained the existing natural variability in the historic weather for those years. A similar 962 

methodology was used by Doherty et al. (2003) to simulate cotton fiber yields spatially across the 963 

southeastern United States. 964 

 965 

3.2.5. Global climate change 966 

Simulation models are widely used to assess the potential impacts of climate change on cropping 967 

systems (White et al., 2011) and to quantify greenhouse gas fluxes from agricultural systems. In both 968 

applications, the models are valued for their ability to quantify potential complex interactions of cultivars, 969 

weather, soils, and management. However, skeptics question the accuracy of simulation models relative 970 

to statistical models from historical analyses of yield and climate trends (Schlenker and Roberts, 2009; 971 

Lobell et al., 2011). 972 

In impact assessment, the usual approach is to compare yield or other traits for a baseline 973 

situation (e.g., 30 years of historical weather and [CO2]) with one or more scenarios where future climatic 974 

and [CO2] conditions are input to the model for one or more reference periods or for an assumed generic 975 

change (e.g., by increasing daily air temperatures 2° C). Among methodological concerns in this process 976 

are how to realistically alter cultivar characteristics and management to account for likely adaptive 977 

changes in cropping seasons. 978 
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Modifications to the GOSSYM model were required to facilitate simulations of cotton responses 979 

under future climate scenarios. Model improvements have focused on the canopy photosynthesis response 980 

to elevated CO2 (Reddy et al., 2008), pollen and fruit production efficiency responses to higher air 981 

temperatures (Reddy et al., 1997c), and growth and developmental responses to ultraviolet-B radiation 982 

effects (Reddy et al., 2003). Using GOSSYM, Reddy et al. (2002a) simulated cotton response to climate 983 

change, including an increase of [CO2] from 360 to 540 ppm, for a 30-year period (1964 to 1993 as the 984 

baseline) at Stoneville, Mississippi. Considering only effects of [CO2], fiber yield increased by 10% from 985 

1560 to 1710 kg ha–1, but when all projected climatic changes were included, fiber yield decreased by 9% 986 

to 1430 kg ha–1. The adverse effect of warming was more pronounced in hot and dry years. With climate 987 

change, most days with average air temperatures above 32° C primarily occurred during the reproductive 988 

phase. As a result, the authors emphasized that irrigation will be needed to satisfy the high water demand, 989 

thus reducing boll abscission by lowering canopy temperatures. Also, if global warming occurs as 990 

projected, fiber production in the future environment will be reduced, and breeding cultivars tolerant to 991 

heat and cold will be necessary to sustain cotton production in the United States Midsouth. Cultural 992 

practices such as earlier planting may be used to avoid flowering in mid to late summer, when high air 993 

temperatures occur. Doherty et al. (2003) simulated cotton response to climate change for the 994 

southeastern United States using the GOSSYM model integrated with general circulation models. 995 

Baseline weather from 1960 to 1995 and a reference [CO2] of 330 ppm were considered. Climate 996 

scenarios corresponded to a [CO2] of 540 ppm. In the absence of [CO2] effects and ignoring adaptation 997 

for planting date (i.e., changing the planting date from 1 May to 1 April), fiber yields decreased by 4% for 998 

a coarse-scale climate grid and by 16% for a fine-scale grid. Allowing for [CO2] and adaptation, fiber 999 

yields increased 30% with the coarse grid and 18% with the fine grid. While confirming that increased 1000 

[CO2] and adaptation have the potential to offset likely adverse effects of warming, the large effects of 1001 

spatial scale emphasize the uncertainties inherent in simulation of climate change. 1002 

Using the Cotton2K model for irrigated cotton in Israel, Haim et al. (2008) reported that 1003 

adaptation by planting two weeks earlier and increasing irrigation could offset the negative effects of 1004 

warming under two climate change scenarios. Using CropSyst to model irrigated cotton in India’s Punjab 1005 

region, Buttar et al. (2012) confirmed that warming could reduce seed cotton yield through accelerated 1006 

development and hence shorter growth duration. 1007 

Independent of potential impacts of climate change on cotton production, researchers have also 1008 

used simulation models to quantify greenhouse gas fluxes from cotton systems and to simulate long term 1009 

changes in soil C where cotton is grown. The EPIC model was used to simulate changes in soil organic C 1010 

under different management scenarios (Causarano et al., 2007). Differences due to landscape position 1011 

were correctly simulated, but the model needed refinement before the simulations were accurate enough 1012 
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to direct management practices at that scale. The EPIC model was also used to evaluate the ability of a 1013 

soil conditioning index to estimate the impact of different cotton tillage systems and other variables on 1014 

soil C content (Abrahamson et al., 2007; 2009). In general, the index provided the same directional 1015 

change in C as EPIC (increase or decrease); however, the relationship was not linear. Del Grosso et al. 1016 

(2006) used the DAYCENT model to estimate nitrous oxide emissions across the United States and 1017 

included cotton systems (typically a cotton-corn rotation) but only reported net emissions. Similarly, 1018 

DAYCENT was used to quantify changes in greenhouse gas fluxes due to conversion from conventional 1019 

to alternative cropping systems (Chamberlain et al., 2011; De Gryze et al., 2010). 1020 

 1021 

3.2.6. Precision agriculture 1022 

The goal of precision agriculture is to optimize field-level management based on several factors, 1023 

such as soil physical properties, yield history, and economic benefit. Since the initial pioneering efforts in 1024 

the late 1990's (McCauley, 1999; Paz et al., 1998; 1999), various strategies to analyze spatial and 1025 

temporal yield variability and develop precision crop management plans using cropping system 1026 

simulation models have been proposed (Batchelor et al., 2002; Booltink et al., 2001; Sadler et al., 2002; 1027 

Thorp et al., 2008). These studies highlighted the importance of using models to account for soil 1028 

heterogeneity across the field. McKinion et al. (2001) integrated the GOSSYM-COMAX DSS with a 1029 

geographic information system (GIS) to determine N fertilization and irrigation management strategies 1030 

that optimized cotton fiber yield spatially. Variation in soil properties was specified in the model using 1031 

soil sample data at 88 locations across the study area on a 1 ha grid. They opined that this system has the 1032 

potential to be used in automatic calculation of optimal irrigation rates considering within-field spatial 1033 

variability. Using data from a cotton study in Arizona, Jones and Barnes (2000) conceptually 1034 

demonstrated the integration of GIS, remote sensing images, cropping systems simulation, and a decision 1035 

model to provide decision support for precision crop management while considering competing economic 1036 

and environmental objectives. Basso et al. (2001) showed that, with a combination of crop modeling and 1037 

remote sensing methods, management zones and causes for yield variability could be identified, which is 1038 

a prerequisite for zone-specific management prescriptions. Clouse (2006) used simulated annealing 1039 

optimization to spatially calibrate the soil parameters of Cotton2K for sites in west Texas, and the 1040 

calibrated model was used to compare site-specific and uniform irrigation management strategies. 1041 

Simulated cotton fiber yields were higher with site-specific irrigation management, but the yield increases 1042 

did not make site-specific irrigation more profitable. In China, Guo et al. (2008) developed a web-based 1043 

DSS for cotton production systems, which integrated a crop simulation model into a GIS. McCarthy et al. 1044 

(2011) reported the development of VARIwise, which incorporated the OZCOT model for evaluation of 1045 

agronomic factors and engineering control strategies for variable-rate irrigation in cotton. Recently, Thorp 1046 
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and Bronson (2013) developed an open-source GIS tool that could manage spatial simulations for any 1047 

point-based crop model. They demonstrated the tool using both the AquaCrop and CROPGRO-Cotton 1048 

models to simulate site-specific seed cotton yield in response to irrigation management, N management, 1049 

and soil texture variability for a 14 ha study area near Lamesa, Texas. 1050 

Although not directly applied to cotton production, several other studies have demonstrated 1051 

important simulation methodologies that would also have relevance for precision cotton management. For 1052 

example, Paz et al. (2002) examined site-specific soybean water stress by adjusting root growth factors 1053 

and tile drainage parameters in CROPGRO-Soybean to minimize error between measured and simulated 1054 

spatial soybean yield. Also, Paz et al. (2003) used CROPGRO-Soybean to analyze options for soybean 1055 

variety selection and to develop prescription maps to achieve economic goals while considering weather 1056 

history and soil variability. Thorp et al. (2006) developed a simulation methodology to determine 1057 

precision N fertilization recommendations while considering the trade-off between maize production and 1058 

loss of N to the environment. Thorp et al. (2007) also demonstrated a cross validation approach to 1059 

evaluate site-specific maize yield simulations with the CERES-Maize model and to identify causes for 1060 

spatial yield variability. Oliver et al. (2010) described the integration of farmer knowledge with several 1061 

precision agriculture tools, including a crop simulation model, to devise practical and effective 1062 

management plans for historically poor performing areas in the field. All of these simulation strategies 1063 

would likely have similar applicability for cotton production systems.  1064 

 1065 

3.2.7. Integration of sensor data with models 1066 

Despite the many potential uses for cotton simulation models described above, a potential 1067 

drawback is the need to adequately specify the values of numerous model parameters to produce 1068 

consistently accurate simulation results. Building on the pioneering work of Maas (1988a; b; 1993a; b; c), 1069 

efforts in the new century have improved the accuracy of crop simulation models by incorporating 1070 

reflectance measurements of the crop canopy during the growing season. A primary source of information 1071 

for within-season crop model calibration is airborne and satellite remote sensing imagery and ground-1072 

based proximal sensors. For example, using medium-resolution satellite imagery, Maas and Rajan (2008) 1073 

estimated ground cover for a variety of field crops. To demonstrate the utility of ground cover 1074 

information for cotton growth model calibration, Ko et al. (2005) modified the GRAMI model for cotton 1075 

and used a within-season calibration procedure to adjust model simulations using relatively simple input 1076 

data derived from proximal sensing. Ko et al. (2006) revised and tested GRAMI to simulate cotton 1077 

growth and fiber yield of water-stressed cotton. The model simulated cotton fiber yield with root mean 1078 

squared errors ranging from 28 to 100 kg ha-1, suggesting that the within-season calibration method could 1079 

be used to model cotton growth under various water-limiting conditions. Rajan et al. (2010) described 1080 
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how GRAMI could be used with infrequent satellite input data for simulating daily crop ground cover and 1081 

estimating crop water use for irrigation scheduling. Sommer et al. (2008) calibrated the CropSyst model 1082 

using within-season satellite-derived LAI of cotton grown in the Khorezm region of Uzbekistan. The high 1083 

temporal resolution of the satellite imagery was useful for improving above ground biomass and LAI 1084 

simulations with the model. 1085 

Remote sensing images have also been useful in efforts to use crop models for crop yield 1086 

forecasting. Bastiaanssen and Ali (2003) used data from the Advanced Very High Resolution Radiometer 1087 

(AVHRR) with Monteith's biomass simulation model and the Surface Energy Balance Algorithm for 1088 

Land (SEBAL) model to estimate regional crop yield for multiple crops, including cotton, in the Indus 1089 

Basin in Pakistan. A limitation of the study was the spatial resolution of the images, which did not permit 1090 

field-scale forecasts. Shi et al. (2007) used multi-temporal images from the Moderate Resolution Imaging 1091 

Spectroradiometer (MODIS) with an agro-meteorological model, based on Monteith’s biomass simulation 1092 

model, to estimate seed cotton yield in the Khorezm region of Uzbekistan. The use of remote sensing data 1093 

inputs reduced the need for field data input in their study. The difference between modeled seed cotton 1094 

yield estimations and published government data was within 10%. Hebbar et al. (2008) used the Infocrop-1095 

cotton model along with data from the Indian Remote Sensing program's Linear Imaging Self-Scanning 1096 

(LISS-III) satellite for simulating seed cotton yield in major cotton growing states in India. The model 1097 

accurately simulated water and N stress, total biomass, and seed cotton yield. The ready availability of 1098 

multispectral imagery at little or no cost, such as that from the Landsat series of satellites, ensures that 1099 

remote sensing data will continue to be a viable source of information to guide crop model simulations 1100 

and potentially improve model performance. 1101 

 1102 

3.2.8. Economics 1103 

Economists use cotton simulation models to determine economically optimal resource use, 1104 

analyze the risk associated with agricultural production, and assess the socio-economic implications of 1105 

agricultural policies. Process-based crop simulation models are now regarded by economists as a better 1106 

alternative to the traditional regression based models, because the former simulates the biological and 1107 

physical process related to the plant growth with better precision (Bontemps et al., 2001). For example, 1108 

Cammarano et al. (2012) used CROPGRO-Cotton to determine profit-maximizing strategies for cotton 1109 

under deficit irrigation in Australia, and the long-term temporal seed cotton yield distribution generated 1110 

by the model was used to determine the economic feasibility of deficit irrigation practices. Nair (2011) 1111 

used cotton fiber yield simulations generated using Cotton2K and an economic model to determine the 1112 

economically optimal strategies to allocate irrigation water among different growth stages of cotton at 1113 

different sub-optimal levels of irrigation water availability. Cotton2K was also used to assess the 1114 
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profitability of partitioning a cotton field, irrigated by center pivot, into irrigated and rainfed portions 1115 

(Nair et al., 2013). This study showed that the field partitioning increased both fiber yield and profitability 1116 

of deficit irrigated cotton. Reddy et al. (2002b) reviewed applications of the GOSSYM model for 1117 

economic and policy decisions. 1118 

From an economist’s point of view, the year-to-year variability in profit, which indicates 1119 

production risk, plays an important role in a producer’s decision making. Bontemps et al. (2001) linked 1120 

the data generated by EPIC to an economic model and showed that when irrigation water availability is 1121 

too low to have risk-reducing impact, but high enough for normal crop growth, the farmers are very 1122 

responsive to changes in water price. Ritchie et al. (2004) used OZCOT to assess risk management 1123 

strategies using seasonal climatic forecasting for cotton in Murray-Darling Basin in Australia. Although 1124 

adjusting planted area in response to seasonal climatic forecasts led to significant increases in returns, 1125 

farmer responses to the forecasts depended on their attitude toward risk. The crop growth simulation 1126 

model, APSIM, coupled with an economic model was used to analyze the benefits and risks of investing 1127 

in recycled water in Australia (Brennan et al., 2008), and a case study was used to illustrate the 1128 

combination of biological and economic models. The Cotton2K model was used along with an 1129 

econometric model to assess the impact of a cotton producer’s attitude towards risk on optimal irrigation 1130 

water allocation decisions for center pivot irrigated cotton in the Texas High Plains (Nair, 2011). The 1131 

results indicated that optimal irrigation water allocation has both profit increasing and risk reducing 1132 

effects. 1133 

 Cotton simulation models are also used to analyze the impact of agricultural policies and to assist 1134 

in making whole-farm management decisions. A windows-based application of the EPIC model, 1135 

CROPMAN, was used to assess the effectiveness of water conservation policies for the Ogallala Aquifer 1136 

in the Texas High Plains (Das et al., 2010; Johnson et al., 2009). These studies compared the water saving 1137 

potential and local economic impacts of water conservation policies, such as imposing pumping 1138 

restrictions and charging a water tax. A multi-field configuration of APSIM named 'APSFarm' was used 1139 

to explore management alternatives and develop whole-farm management decisions in Australia (Power 1140 

et al., 2011a). Kuhn et al. (2010) used EPIC along with an economic model to evaluate the effect of tax 1141 

exemptions on fertilizer use in Benin and reported that tax exemption on fertilizers increased crop 1142 

productivity and decreased excessive expansion of cropped area. Wang and Nair (2013) developed a 1143 

theoretical framework for determining economically optimal irrigation water allocations for cotton under 1144 

deficit irrigation and used this economic model along with the fiber yield data generated using Cotton2K 1145 

to analyze the water saving potential of the cost-share program aimed at improving adoption of high 1146 

efficiency irrigation systems. They concluded that this program did not provide any incentive for the 1147 

producers to conserve water. 1148 
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 1149 

3.2.9. Classroom instruction 1150 

Cropping system simulation models have been used by instructors to teach principles of life 1151 

sciences and environmental management (Boote et al., 1996; Graves et al., 2002; Reddy et al., 2002b). 1152 

However, most models are not classroom-friendly and are not easily portable from one instructor or 1153 

institution to another. Therefore, models as instructional aides are limited even though the potential 1154 

benefits to students, instructors, and institutions exist (Graves et al., 2002). 1155 

Many graduate students and postgraduate researchers at Mississippi State University and other 1156 

institutions have contributed to various aspects of GOSSYM model development (Reddy et al., 2002b). 1157 

Researchers in agricultural engineering, agronomy, climate change, computer science, economics, 1158 

entomology, extension education, meteorology, and soil and biological sciences have engaged in this 1159 

effort. The GOSSYM model has been used as an instructional tool to teach students the basic principles 1160 

of botany, climate impacts, and management options in cotton production, to enhance problem solving 1161 

skills in the life sciences, and to provide a holistic understanding of cropping system processes. Two 1162 

instructional methodologies have been used: one in which students improve the functionality of the 1163 

models by adding new knowledge to the existing model code and another in which the model is used for 1164 

classroom instruction. One approach for classroom instruction teaches a given cropping system concept 1165 

by demonstrating how it is modeled. For example, students learn how cotton growth and development is 1166 

affected by multiple stress factors and how these factors are summarized using the environmental 1167 

productivity index to reduce photosynthesis (Reddy et al., 2008; www.spar.msstate.edu/classes.html). 1168 

Another approach for classroom instruction demonstrates how a model can be used to study management 1169 

options and to understand crop development and yield responses to environmental variables, such as 1170 

climate change. Students learn to implement cropping system simulation models to study the effects of 1171 

alternate planting dates, future climate change, and alternate fertility or irrigation schedules on crop 1172 

development and yield. Without a process-based model such as GOSSYM, it would be difficult to teach 1173 

crop and climate interactions in a traditional setting. Students appreciate the utility of simulation models 1174 

for understanding cropping system concepts and how management affects cotton production in real-world 1175 

scenarios. 1176 

Instruction on the use of the DSSAT crop models has been provided during annual short-term 1177 

training workshops. These training programs have attracted between 50 to 100 attendees internationally 1178 

from private businesses, universities, and government agencies, demonstrating the interest in the models 1179 

among a variety of people. Such workshops are currently the primary source of formal training for post-1180 

graduate agricultural professionals aiming to use crop models in their work. 1181 

 1182 
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3.2.10. Other agronomic considerations 1183 

To assist research in cotton management issues, OZCOT has been used to investigate 1184 

opportunities for using high fruit retention transgenic cotton with changes in planting time to improve 1185 

crop WUE (Braunack et al., 2012) and to assess the risk of alternative management strategies for early 1186 

crop maturity (Richards et al., 2001). As part of the FARMSCAPE initiative, which was a participatory 1187 

action research approach used to encourage the use of cropping system models in Australian commercial 1188 

cotton production (Carberry et al., 2002b), OZCOT was implemented to assist dryland cotton growers in 1189 

choosing summer crops (sorghum or cotton) and cotton row configurations (solid planted versus skipped 1190 

rows) to reduce risk of crop failure (Bange et al., 2005). Extending this effort by using the APSIM 1191 

simulation framework (Keating et al., 2003) has enabled assessments of the production, economic, and 1192 

environmental consequences of different dryland crop rotation sequences involving cotton (Carberry et 1193 

al., 2002b). 1194 

To estimate changes in soil organic C for different cropping systems in West Africa, Tojo Soler et 1195 

al. (2011) used CROPGRO-Cotton with other DSSAT crop modules to simulate eight crop rotations that 1196 

included cotton, sorghum, peanut, maize, and fallow. In agroforestry research, Zamora et al. (2009) used 1197 

the CROPGRO-Cotton model to investigate light availability to cotton under a pecan alley cropping 1198 

system. Finally, Ortiz et al. (2009) used CROPGRO-Cotton to assess the impacts of root-knot nematode 1199 

parasitism on biomass and seed cotton yield in Georgia. 1200 

 1201 

4. Future Directions and Opportunities 1202 

In the last century, research efforts resulted in the development of several cropping system 1203 

simulation models for cotton, including GOSSYM, Cotton2K, COTCO2, OZCOT, and CROPGRO-1204 

Cotton. At that time, research funding was available specifically for model development and testing. For 1205 

example, GOSSYM development was initially funded within the USDA Agricultural Research Service 1206 

(Baker et al., 1983), and CROPGRO development originated with the IBSNAT Project (Uehara and 1207 

Tsuji, 1998) funded by the United States Agency for International Development (USAID). Sources of 1208 

funding for model development have largely disappeared. The Agricultural Model Intercomparison and 1209 

Improvement Project (AgMIP) is a recent noteworthy effort to improve existing crop simulation models, 1210 

although model developers are expected to provide their own resources for this effort. AgMIP is an 1211 

international effort to link climate, crop, and economic models to address climate change impacts on 1212 

world food security in both developed and developing countries (www.agmip.org). Two major themes of 1213 

AgMIP that will advance the use of cropping systems simulation models in the new century are 1) the 1214 

intercomparison and improvement of existing crop models to identify simulation approaches that best 1215 

estimate cropping system processes and 2) the development of multidisciplinary teams that unite 1216 
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researchers in the areas of climate science, crop science, computer science, and economics. 1217 

Multidisciplinary teamwork and efforts to compare cotton models, such as that exemplified in AgMIP, 1218 

will increase the utility of these models for addressing cotton production issues in the new century. 1219 

A notable accomplishment reported herein is the development of the spatially-distributed 1220 

GOSSYM model (Liang et al., 2012b), because large-scale applications of cropping system models are 1221 

becoming increasingly important to address the imminent challenge of global climate change. Policy 1222 

makers, economists, and climate scientists are more interested in simulation results at regional scale, such 1223 

as county-level, state-level, or the 30 km grid used by Liang et al. (2012b). However, because existing 1224 

cotton simulation models were developed from decades of experiments at the scale of individual 1225 

agronomic plots, plants, or plant leaves, the implementation of the models at regional scale offers several 1226 

challenges. Foremost is the challenge of collecting model input data over large areas with spatial 1227 

resolution high enough to satisfy the original model scaling assumptions. Since current data collection 1228 

methods are unable to provide such detailed information, the only option has been to conduct simulations 1229 

at reduced spatial resolutions with knowledge that landscape heterogeneity can largely invalidate the 1230 

original scaling assumptions of the model. The degree to which system processes measured and simulated 1231 

at the point-scale is relevant at broader scales remains an open question. One solution lies in the 1232 

development of better data collection methodologies, so model input requirements can be satisfied at an 1233 

appropriate spatial scale. Until that goal is realized, generalization and simplification of existing models is 1234 

necessary to provide appropriate simulation tools for large-scale analyses that are not focused within the 1235 

borders of a given agronomic unit. 1236 

Satellite remote sensing has been proposed as a source of spatial data for model parameterization 1237 

and calibration; however, remaining challenges are how to appropriately interface remotely sensed 1238 

measurements with the simulation models and whether remote sensing offers enough information to 1239 

effectively guide a given model. This issue is also likely related to the issue of model complexity versus 1240 

generality. With the notable exception of GRAMI, most cropping system simulation models were 1241 

developed independently from advancements in remote sensing, which complicates their union. Further 1242 

development and perhaps generalization of existing models, while considering the types of information 1243 

that can be obtained from remote and proximal sensing, will promote the union of the models with these 1244 

sensing technologies. Conversely, model parameterization requirements can advise the development of 1245 

novel sensors that provide better estimates of model input parameters. For example, sensors that measure 1246 

leaf orientation or boll development may assist model parameterization efforts. Improving the union of 1247 

models and sensor data will facilitate the regional-scale modeling endeavors described above as well as 1248 

precision agriculture applications at the field scale. 1249 
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While large-scale applications of cotton simulation models are becoming increasingly important, 1250 

the main utility of the models remains as a tool for guiding management decisions. In the last decade, the 1251 

literature has demonstrated substantial efforts to use cotton simulation models for irrigation water 1252 

management in all major cotton-producing regions across the globe. The models were also used to 1253 

address N fertilization issues and to make crop management decisions in response to near-term 1254 

climatological predictions or water supply constraints. Lascano and Booker (2013) discussed several 1255 

factors that have contributed to the surge in use of mechanistic crop models as management tools. Factors 1256 

included advances in computer hardware and software, electronics, variable-rate application, and 1257 

proliferation and availability of the input data required by the models. For example, soil data provided by 1258 

the United States Department of Agriculture, elevation data provided by the United States Geological 1259 

Survey, and weather data from weather networks provide the necessary inputs for model implementation 1260 

throughout most of the United States Cotton Belt. Despite these positive developments, a substantial gap 1261 

persists between the use of cotton simulation models for research and for on-farm decision making 1262 

(McCown, 2002b; McCown et al., 2002). Scientists have theorized (McCown, 2002a) and developed 1263 

(McCown et al., 2002) many agricultural DSSs to deliver scientific knowledge to farm managers. 1264 

Unfortunately, many such DSSs remain unused (McCown, 2002b). Also, McCown et al. (2012) 1265 

documented farmers' tendency to reduce model simulation results to a set of intuitive management rules, 1266 

thereby foregoing model use as an on-going decision aid. Lessons for successful on-farm implementation 1267 

of scientific DSSs include 1) treatment of the DSS as a tool to assist the decision process rather than to 1268 

by-pass it, 2) the importance of positive social interaction between the DSS developer and the farmer, and 1269 

3) the potential for co-creation of DSSs that incorporate both practical and scientific knowledge 1270 

(McCown, 2002b). Notable examples of successful interactions between scientists and farmers include 1271 

the early efforts to use GOSSYM-COMAX for on-farm cotton management (McKinion et al., 1989); the 1272 

use of APSIM in the FARMSCAPE initiative to examine the benefits of science-based soil sampling, 1273 

climate forecasting, and simulation modeling applied to on-farm decision support (Carberry et al., 2002b); 1274 

and an application of OZCOT within the HydroLOGIC irrigation management software for eleven on-1275 

farm experiments in Australia (Richards et al., 2008). Continued interaction between cotton growers and 1276 

research scientists is warranted to facilitate the use of cotton models for on-farm decisions and to develop 1277 

appropriate decision tools that implement the models to answer pertinent questions. 1278 

Applications of cotton simulation models in the broader assessment of environmental impacts are 1279 

also increasing in importance. This review provides many examples of model use for analyzing losses of 1280 

N fertilizer and other production inputs to the environment, quantifying greenhouse gas emissions from 1281 

agricultural soils, and assessing the potential for soil C sequestration. However, there is currently a 1282 

movement toward life-cycle assessment or cradle-to-grave analysis for many consumer products, 1283 
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including textiles and food. These efforts originate both from policy mandates such as those in the 1284 

European Union (Wolf et al., 2012) and from industry initiatives such as The Sustainability Consortium 1285 

(www.sustainabilityconsortium.org). Cropping system simulation models are the only tool that can 1286 

account for complex cropping system processes and estimate the impacts of crop management practices 1287 

over a wide range of environmental conditions and geographic locations. 1288 

In the early days of cropping system simulation model development, the models were commonly 1289 

regarded as stand-alone tools for crop growth simulation, and computing technology at that time did not 1290 

permit much more. Increasingly, the models are now implemented as a single component within broader 1291 

software and hardware systems. For example, the use of cotton simulation models with optimization 1292 

algorithms and advanced process control for irrigation management (McCarthy et al., 2013), within GIS 1293 

software for spatial simulation analyses (Thorp et al., 2013), or with other process models that simulate 1294 

water availability (Ritchie et al., 2004), irrigation hydraulics (Bautista et al., 2009), or climate forecasts 1295 

(Liang et al., 2012b) will be increasingly important for optimizing management practices while more 1296 

broadly considering the desired management outcomes. Hence, it is expected that the greatest benefit of 1297 

cotton simulation models will be realized by integrating the models with the other software and hardware 1298 

components, as required for whole system optimization. For example, cotton simulation models could be 1299 

integrated with equipment control systems (e.g., irrigation consoles and tract sprayer controllers), which 1300 

use real-time telemetry data that describe environmental conditions and crop status to automatically adjust 1301 

crop inputs both spatially and temporally for optimum crop production. Simultaneously, models 1302 

integrated with geospatial technologies on a large server could calculate cropping system responses 1303 

regionally and provide field-scale control systems with information on crop input limitations or 1304 

restrictions, considering potential environmental impacts, resource restraints, and climate predictions at 1305 

the regional scale. 1306 

This broad vision for model implementation requires the models to be succinct, well-structured, 1307 

and flexible enough for seamless integration into diverse software and hardware systems. It also 1308 

necessitates improvements in model documentation, training courses, and educational materials, because 1309 

the next generation of cotton modelers will likely come from diverse disciplines and may have limited 1310 

knowledge of the ecophysiology represented in the models. Efforts are needed to design models that are 1311 

more foolproof, quickly learned, and easily implemented. This will increase confidence in the models, 1312 

attract more users who find value in modeling endeavors, and insure that future generations benefit from 1313 

the model development efforts undertaken in the past decades. 1314 

 1315 

5. Conclusions 1316 
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Prior to conducting this review of literature, the consensus among several of the authors was that 1317 

the development and application of cotton simulation models had somewhat languished since the early 1318 

successes with the GOSSYM model in the last century. With regard to model development, this 1319 

assessment appears accurate. No sustained advancements in the development of simulation models 1320 

specific to cotton were noted in the new century. However, there has been a substantial increase in the 1321 

application of cotton models since 2000. In fact, the main topics of early reports on cotton simulation 1322 

modeling applications, including irrigation and fertilizer management, climate assessment, and model 1323 

integration with remote sensing, have all been expounded to full sections herein, each describing several 1324 

reports of new progress since the turn of the century. These contributions have been largely disconnected 1325 

however, an issue that this review aimed to remedy. 1326 

An encouraging finding is the increased interest and use of cotton simulation models by non-1327 

agronomists and non-traditional crop modelers. Researchers in economics, engineering control, and 1328 

climate forecasting recognize the utility of process-based cropping system simulation models for 1329 

applications within their areas of expertise. Increasingly, cotton simulation models are being implemented 1330 

beyond simple evaluations of agronomic experiments. As a result, a challenge for model developers is to 1331 

address complexity issues with the models and to insure that models of appropriate complexity are 1332 

available for a given application. A related issue is to improve the ease of model implementation for non-1333 

traditional crop modelers.  1334 

While improving model versatility for non-agronomists is an important goal, a main thrust for 1335 

cotton simulation modeling research and application continues to be in the area of on-farm management 1336 

decisions, including both strategic planning for allocation of limited resources and routine management of 1337 

production inputs by growers. Thus, further efforts to develop and evaluate existing cotton simulation 1338 

models are warranted to improve their ability to respond adequately to environmental conditions and 1339 

simulate cotton growth, development, and yield at the field scale. No efforts to compare existing cotton 1340 

simulation models were found in literature, so this would be advisable as a first effort to evaluate 1341 

methodologies among existing cotton simulation models.  1342 
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Table 1. General information on existing cotton simulation models. 
Model Predecessor Models Programming 

Language 
Time 
Step 

Key References Decision Support 
Tools 

GOSSYM 
SIMCOTI 
SIMCOTII 

Fortran 
 

Daily 
Baker et al. (1983) 

Reddy et al. (2002b) 
COMAX 

Cotton2K 
GOSSYM 
CALGOS 

C++, formerly 
Fortran 

Hourly Marani (2004) None 

COTCO2 
KUTUN 

ALFALFA 
Fortran Hourly Wall et al. (1994) None 

OZCOT SIRATAC 
C#, formerly 

Fortran 
Daily 

Hearn and Da Roza (1985) 
Hearn (1994) 

APSIM 
CottBASE 

HydroLOGIC 
VARIwise 

Whopper Cropper 

CSM-CROPGRO-Cotton CROPGRO-Soybean Fortran Daily 
Hoogenboom et al. (1992) 

Jones et al. (2003) 
DSSAT 
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Table 2. Crop growth and development processes simulated by existing cotton simulation models. 
 GOSSYM Cotton2K COTCO2 OZCOT CROPGRO-Cotton 

Phenology 

Develops vegetative 
and fruiting branches 
and nodes based on 

thermal time 
 

Calculates the number 
of branches, squares, 

bolls, open bolls, 
fruiting sites, and 

aborted fruits 

Develops vegetative 
and fruiting branches 
and nodes based on 

thermal time 
 

Calculates the number 
of branches, squares, 

bolls, open bolls, 
fruiting sites, and 

aborted fruits 

Develops meristem 
tissue, leaf primordia, 
petioles, growing and 
mature leaves, stem 
segments between 

nodes, squares, bolls, 
and open bolls  based 

on thermal time 

Develops the number 
of fruiting sites based 

on thermal time 
 

Calculates the number 
of squares, bolls, open 

bolls, and aborted 
fruits based on crop 
carrying capacity 

Development proceeds 
through growth stages 
based on photothermal 
time: emergence, first 
leaf, first flower, first 

seed, first cracked 
boll, and 90% open 

boll. 
 

Calculates boll number 
and aborted fruits 

Plant maps Yes Yes Yes No No 

Potential carbon 
assimilation 

Canopy-level radiation 
interception 

Canopy-level radiation 
interception 

Organ-level 
biochemistry 

(Farquhar et al., 1980) 

Canopy-level radiation 
interception 

Leaf-level 
biochemistry 

(Farquhar et al., 1980) 

Respiration 

Uses an empirical 
function of respiration 
based on biomass and 

air temperature 

Calculates growth and 
maintenance 

respiration and 
photorespiration 

Calculates organ-level 
growth and 
maintenance 

respiration and 
photorespiration 

Uses empirical 
functions of 

respiration based on 
fruiting site count  and 

air temperature 

Calculates growth and 
maintenance 
respiration 

Partitioning 
Allocates carbon to 
individual growing 

organs 

Allocates carbon to 
individual growing 

organs 

Allocates carbon to 
individual growing 

organs 

Allocates carbon to 
cohort pools for 
developing bolls 

Allocates carbon to 
single pools for leaves, 
stems, roots, and bolls 

Canopy size Calculates plant height Calculates plant height 
Calculates stem 
segment lengths 

None 
Calculates hedgerow-
based canopy height 

and width 

Yield 
components 

Calculates fiber mass 
as a fraction of boll 
mass and boll size 

Calculates burr mass 
and seed cotton mass 

Calculates boll mass 
Calculates fiber mass 
as a fraction of boll 
mass and boll size 

Calculates boll mass, 
seed cotton mass, seed 
number, and unit seed 

weight 

Stress 
Calculates stress due 

to water, nitrogen, and 
air temperature 

Calculates stress due 
to water, nitrogen, and 

air temperature 

Calculates stress due 
to water and air 

temperature 

Calculates stress due 
to water, nitrogen, and 

air temperature 

Calculates stress due 
to water, nitrogen, and 

air temperature 
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Table 3. Atmospheric and soil processes simulated by existing cotton simulation models. 
 GOSSYM Cotton2K COTCO2 OZCOT CROPGRO-Cotton 

[CO2] effect on 
photosynthesis 

Yes Yes Yes No Yes 

[CO2] effect on 
transpiration 

No No Yes No Yes 

ET Ritchie (1972) 

Modified Penman 
equation from CA 

Irrigation Management 
Information System 

Leaf-level energy 
balance coupled with 
stomatal conductance 

Richie (1972) 
Priestley and Taylor 
(1972) and FAO-56 
(Allen et al., 1998) 

Soil water 
2D RHIZOS model 

(Lambert et al., 1976) 
2D RHIZOS model 

(Lambert et al., 1976) 
2D model Ritchie (1972) 

Ritchie (1998) and 
Ritchie et al. (2009) 

Soil nitrogen 
Dynamic simulation of 
soil and plant nitrogen 

balances 

Dynamic simulation of 
soil and plant nitrogen 

balances 
No 

Static, empirical 
approach that predicts 

potential N uptake 

Godwin and Singh 
(1998) or Gijsman et 

al. (2002) 
Soil phosphorus No No No No Yes 

Soil salinity No Yes No No No 
Waterlogging No No No Yes Yes 

Flooding No No No No Yes 
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Table 4. Management practices simulated by existing cotton simulation models and other applications. 
 GOSSYM Cotton2K COTCO2 OZCOT CROPGRO-Cotton 

Sowing date X X X X X 
Cultivar selection X X X X X 

Row spacing X X X X X 
Skip rows X X  X  

Planting density X X X X X 
Irrigation X X X X X 
Fertilizer X X  X X 

Crop residue     X 
Tillage  X   X 

Growth regulators X X    
Defoliation X X  X X 

Insect damage X X X X X 
Disease impact  X   X 
Climate change X  X  X 

Cropping sequences    X X 
Geospatial analysis  X  X X 
 


