14 research outputs found

    Meal patterning and the onset of spontaneous labor

    Get PDF
    Background: There is a lack of consensus in the literature about the association between meal patterning during pregnancy and birth outcomes. This study examined whether maternal meal patterning in the week before birth was associated with an increased likelihood of imminent spontaneous labor. Methods: Data came from 607 participants in the third phase of the Pregnancy, Infection, and Nutrition Study (PIN3). Data were collected through an interviewer-administered questionnaire after birth, before hospital discharge. Questions included the typical number of meals and snacks consumed daily, during both the week before labor onset and the 24-hour period before labor onset. A self-matched, case-crossover study design examined the association between skipping one or more meals and the likelihood of spontaneous labor onset within the subsequent 24 hours. Results: Among women who experienced spontaneous labor, 87.0% reported routinely eating three daily meals (breakfast, lunch, and dinner) during the week before their labor began, but only 71.2% reported eating three meals during the 24-hour period before their labor began. Compared with the week before their labor, the odds of imminent spontaneous labor were 5.43 times as high (95% CI: 3.41-8.65) within 24 hours of skipping 1 or more meals. The association between skipping 1 or more meals and the onset of spontaneous labor remained elevated for both pregnant individuals who birthed early (37-<39 weeks) and full-term (≄39 weeks). Conclusions: Skipping meals later in pregnancy was associated with an increased likelihood of imminent spontaneous labor, though we are unable to rule out reverse causality

    Is prenatal diet associated with the composition of the vaginal microbiome?

    Get PDF
    Background: The vaginal microbiome has been associated with adverse pregnancy outcomes, but information on the impact of diet on microbiome composition is largely unexamined. Objective: To estimate the association between prenatal diet and vaginal microbiota composition overall and by race. Methods: We leveraged a racially diverse prenatal cohort of North Carolina women enrolled between 1995 and 2001 to conduct this analysis using cross-sectional data. Women completed food frequency questionnaires about diet in the previous 3 months and foods were categorised into subgroups: fruits, vegetables, nuts/seeds, whole grains, low-fat dairy, sweetened beverages and red meat. We additionally assessed dietary vitamin D, fibre and yogurt consumption. Stored vaginal swabs collected in mid-pregnancy were sequenced using 16S taxonomic profiling. Women were categorised into three groups based on predominance of species: Lactobacillus iners, Lactobacillus miscellaneous and Bacterial Vaginosis (BV)-associated bacteria. Adjusted Poisson models with robust variance estimators were run to assess the risk of being in a specific vagitype compared to the referent. Race-stratified models (Black/White) were also run. Results: In this study of 634 women, higher consumption of dairy was associated with increased likelihood of membership in the L. crispatus group compared to the L. iners group in a dose-dependent manner (risk ratio quartile 4 vs. 1: 2.01, 95% confidence interval 1.36, 2.95). Increased intake of fruit, vitamin D, fibre and yogurt was also associated with increased likelihood of membership in L. crispatus compared to L. iners, but only among black women. Statistical heterogeneity was only detected for fibre intake. There were no detected associations between any other food groups or risk of membership in the BV group. Conclusions: Higher consumption of low-fat dairy was associated with increased likelihood of membership in a beneficial vagitype, potentially driven by probiotics

    Researching COVID to enhance recovery (RECOVER) pregnancy study: Rationale, objectives and design

    Get PDF
    Importance Pregnancy induces unique physiologic changes to the immune response and hormonal changes leading to plausible differences in the risk of developing post-acute sequelae of SARS-CoV-2 (PASC), or Long COVID. Exposure to SARS-CoV-2 during pregnancy may also have long-term ramifications for exposed offspring, and it is critical to evaluate the health outcomes of exposed children. The National Institutes of Health (NIH) Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC aims to evaluate the long-term sequelae of SARS-CoV-2 infection in various populations. RECOVER-Pregnancy was designed specifically to address long-term outcomes in maternal-child dyads. Methods RECOVER-Pregnancy cohort is a combined prospective and retrospective cohort that proposes to enroll 2,300 individuals with a pregnancy during the COVID-19 pandemic and their offspring exposed and unexposed in utero, including single and multiple gestations. Enrollment will occur both in person at 27 sites through the Eunice Kennedy Shriver National Institutes of Health Maternal-Fetal Medicine Units Network and remotely through national recruitment by the study team at the University of California San Francisco (UCSF). Adults with and without SARS-CoV-2 infection during pregnancy are eligible for enrollment in the pregnancy cohort and will follow the protocol for RECOVER-Adult including validated screening tools, laboratory analyses and symptom questionnaires followed by more in-depth phenotyping of PASC on a subset of the overall cohort. Offspring exposed and unexposed in utero to SARS-CoV-2 maternal infection will undergo screening tests for neurodevelopment and other health outcomes at 12, 18, 24, 36 and 48 months of age. Blood specimens will be collected at 24 months of age for SARS-CoV-2 antibody testing, storage and anticipated later analyses proposed by RECOVER and other investigators. Discussion RECOVER-Pregnancy will address whether having SARS-CoV-2 during pregnancy modifies the risk factors, prevalence, and phenotype of PASC. The pregnancy cohort will also establish whether there are increased risks of adverse long-term outcomes among children exposed in utero

    Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers.

    Get PDF
    Metabolic reprogramming provides critical information for clinical oncology. Using molecular data of 9,125 patient samples from The Cancer Genome Atlas, we identified tumor subtypes in 33 cancer types based on mRNA expression patterns of seven major metabolic processes and assessed their clinical relevance. Our metabolic expression subtypes correlated extensively with clinical outcome: subtypes with upregulated carbohydrate, nucleotide, and vitamin/cofactor metabolism most consistently correlated with worse prognosis, whereas subtypes with upregulated lipid metabolism showed the opposite. Metabolic subtypes correlated with diverse somatic drivers but exhibited effects convergent on cancer hallmark pathways and were modulated by highly recurrent master regulators across cancer types. As a proof-of-concept example, we demonstrated that knockdown of SNAI1 or RUNX1—master regulators of carbohydrate metabolic subtypes-modulates metabolic activity and drug sensitivity. Our study provides a system-level view of metabolic heterogeneity within and across cancer types and identifies pathway cross-talk, suggesting related prognostic, therapeutic, and predictive utility

    Drug treatment of primary hyperlipoproteinemia

    No full text

    Teoria democrĂĄtica e polĂ­tica comparada

    No full text
    corecore