9,016 research outputs found

    Optimal preparation of the ECC ozonesonde

    Get PDF
    The ECC background current was identified as the removal of residual tri-iodide (iodine) as the cell approaches equilibrium. The altitude dependence of this source of the background current is expected to be only slowly changed in the troposphere with a more rapid decrease in the stratosphere. Oxygen does not play a role in the background current except in the unlikely situation where the electrodes have had all forms of iodine removed from them and the electrodes have not re-equilibrated with the sonde solutions before use. A solution mass transport parameter in the ECC was identified and its altitude dependence determined. The mass transport of tri-iodide dominates in the chemical transduction of ozone to electrical signal. The effect of the mass transport on the ECC background current is predicted. An electrochemical model of the ECC has been developed to predict the response of the ECC to various ozone vertical profiles. The model corresponds very closely to the performance of the ECC in the laboratory. Based on this model, an ECC with no background current is predicted to give total ozone values within 1% of the correct value, although the vertical profile may be in error by as much as + or - 15%

    Optimizing an array of antennas for cellular coverage from a high altitude platform

    Get PDF
    In a wireless communications network served by a high altitude platform (HAP) the cochannel interference is a function of the antenna beamwidth, angular separation and. sidelobe level. At the millimeter wave frequencies proposed for HAPs, an array of aperture type antennas on the platform is a practicable solution for serving the cells. We present a method for predicting cochannel interference based on curve-fit approximations for radiation patterns of elliptic beams which illuminate cell edges with optimum power, and a means of estimating optimum beamwidths for each cell of a regular hexagonal layout. The method is then applied to a 121 cell architecture. Where sidelobes are modeled As a flat floor at 40-dB below peak directivity, a cell cluster size of four yields carrier-to-interference ratios (CIRs), which vary from 15 dB at cell edges to 27 dB at cell centers. On adopting a cluster size of seven, these figures increase, respectively, to 19 and 30 dB. On reducing the sidelobe level, the. improvement in CIR can be quantified. The method also readily allows for regions of overlapping channel coverage to be shown

    The application of the scanning electron microscope to studies of current multiplication, avalanche breakdown and thermal runaway. Part 2 - General studies, mainly non-thermal

    Get PDF
    Scanning electron microscope applications in study of current multiplication, avalanche breakdown, and thermal runaway - Nonthermal effects in Read diode

    Studies of finite element analysis of composite material structures

    Get PDF
    Research in the area of finite element analysis is summarized. Topics discussed include finite element analysis of a picture frame shear test, BANSAP (a bandwidth reduction program for SAP IV), FEMESH (a finite element mesh generation program based on isoparametric zones), and finite element analysis of a composite bolted joint specimens

    Book Reviews

    Get PDF

    Time Domain Simulations of Arm Locking in LISA

    Get PDF
    Arm locking is a technique that has been proposed for reducing laser frequency fluctuations in the Laser Interferometer Space Antenna (LISA), a gravitational-wave observatory sensitive in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that comprise LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of arm locking including the expected limiting noise sources (shot noise, clock noise, spacecraft jitter noise, and residual laser frequency noise). The effect of imperfect a priori knowledge of the LISA heterodyne frequencies and the associated 'pulling' of an arm locked laser is included. We find that our implementation meets requirements both on the noise and dynamic range of the laser frequency.Comment: Revised to address reviewer comments. Accepted by Phys. Rev.
    • …
    corecore