

$$
\mathrm{N} O T \mathrm{I} \text { C E }
$$

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELeASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

SCHOOL OF ENGINEERING OLD DOMINION UNIVERSITY NORFOLK, VIRGINIA

Technical Report 75-M3

STUDIES IN FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIAL STRUCTURES

By

Dale O. Douglas
Donna E. Holzmache:
Zoa C. Lane
and
Earl A. Thornton-

Final Technical Repor

Prepared for the
National Aeronautics and Space Administration:
Langley Research Center.
Hampton, Virginia 23665

Under
Grant NSG 1043
June 1, 1974 - May 31, 1975
Dr. J.G. Davis; Jr., Technical Monitor Materials Division. Composites Section

Submitted by the

Old Dominion University Research Foundation Norfolk, Virginia

September 1975

FOREWORD

This report presents four papers resulting from research conducted under a grant from NASA to the Old Dominion University Research Foundation entitled: "A Research Participation Program for Minority Engineering Students". The three undergraduate engineering students, Dale O. Douglas, Donna E. Holzmacher, and Zoa C. Lane, worked under the direction of Dr. Earl A. Thornton, Associate Professor of Mechanical Engineering and Mechanics.

The student-faculty team began their research in analysis of composite materials at Langley Research Center during a ten-week periöd in the summer of 1974: The work was continued during the academic year 1974-1975 at Old Dominion Universitv.

Dr. John G. Davis, Jr., of the Composites Section, Materials Application Branch of the Materials Division served as technical monitor for the program. For his cooperation, encouragement, and counsel the authors express their deepest apprèciation.
Page
FINITE ELEMENT ANALYSIS OF A PICTURE FRAME SHEAR TEST
Dale O. Douglas
Introduction 2
Description of Test 2
Test Specimen 3
Analysis of Shear Test 3
Results and Discussion 6
Concluding Remarks 7
References 9
Figures. 10
BANSAP, A BANDWIDTH REDUCTION PROGRAM FOR SAP IV
Donna E.: Holzmacher
Introduction 26
Collins Bandwidth Reduction Algorithm 28
SAP IV Preprocessing Program 29
Applications of BANSAP 30
Concluding Remarks 31
Appendix. A: User Instructions 32
Appendix B: BANSAP. Source Listing 35
Appendix C: Sample BANSAP Output 47
References 53
Tables 54
Figures 57
FEMESH, A FINITE ELEMENT MESH GENERATION PROGRAM BASED ON ISOPARAMETRIC ZONES
Zoa C.. Lañe
Introduction 65
Interpolation Function'Techniques for Finite Element Generation 66
Program FEMESH 67
Applications 68
Concluđing Remarks 69
Appendix A: User Instructions for FEMESH 71
Appendix B: FORTRAN Listing of Mesh Generation Program, FEMESH 77
References 91
Tables 92
Figures 99

CONTENTS - concluded

Page
FINITE ELEMENT ANALYSIS OF A COMPOSITE BOLTED JOINT SPECIMEN

Earl A. Thornton
Introduction . 109
Bolted Joint Specimen 110
Analytical Procedures 110
Finite Element Model 110
Bolt Loads 112
Results and Discussion 113
Concluding Remarks 115
References . 117
Table 118
Figures 119

FINITE ELEMENT ANALYSIS OF A PICTURE FRAME SHEAR TEST

By:
Dale O. Douglas

FINITE ELEMENT ANALYSIS OF A PICTURE FRAME SHEAR TEST

By

Dale O. Douglas

INTRODUCTION

Shear testing of composite materials is generally concerned with two principal areas of interest: (1) to determine the inplane shear properties, or (2) to determine the interlaminar or normal shear properties. In-plane shear properties of a laminate are among the most difficult to determine because of problems in applying a.state of uniform shearing stress. Concepts for determining in-plane shear properties include torsion tube tests, rail. shear tests, and picture frame shear tests

The most direct method of applying pure shear is by torsion of a tube. This test method has proven to be a reliable means of determining in-plane shear properties (ref. l). However fabrication techniques. for high quality $\pm 45^{\circ}$ metal matrix composite tubes have not yet been established. The difficulty of fabricating high quality tubes has stimulated research in other methods of shear testing.

Another type of shear test is the rail shear test. It uses a thin laminate, loaded along its length by two pairs of rails, leaving an unsupported central test section

In the present study an analysis of a picture frame shear test performed at Langley Research Center is presented. The purposes of the study were to determine the stress distributions in the picture frame shear test specimen and to determine the effect of local reinforcements on the stress distributions.

DESCRIPTION OF TEST

The experimental setup for a picture frame shear test is shown in figure 1. The picture frame shear test was used to
produce in-plane shear stress in the test panel. The shear panel was bonded to a frame constructed from four 1 in: $x 1$ in. steel edge bars designed to simulate fully clamped edge conditions. The panel specimen was bolted to a test frame by 0.375 -in.diameter bolts, sëven per side. At each corner of the test frame, loads were applied to the pin joints by the testing machine. Tensile loads were applied to the vertical pins, and compressive loads were applied to the horizontal pins to produce shear loading in the test specimen.

test specimen

The test specimens were made using 7 in. $x 7$ in. borsic aluminum sandwich shear panels. With the addition of 1 in. \dot{x} lin. steel edge bars, the overall dimensions of the shear panel specimen were 9 in. x 9 in. with a nominal thickness of 1 in. To permit installation of the pins on the test frame, a portion of the shear panel was cut away at each corner. Each corner had a radius of 0.25 in . The test specimen is shown schematically in figure 2.

The sandwich panel consisted of two face sheets separated by a honeycomb core. On each face sheet there were four plies (0.0285 in. thick) at a $\pm 45^{\circ}$ layup. The panel face sheets were cut from lo-in.-square laminates. The filaments of the laminate were parallel to the applied loads. Some of the test specimens were reinforced with titanium doublers (0.060 in . thick) in the vicinity of the corner radii.

ANALYSIS OF SHEAR TEST

Finite element analyses were made to determine the in-plane stress distributions in the shear panel. The finite models represented the shear panel specimens using orthotropic, two-dimensional plane stress elements. Two general purpose finite element computer programs were utilized in the analysis of the shear panel. The first was NASTRAN (NASA Structural Analysis Program) which was
used on the CDC-6600 computer at Langley Research Center. NASTRAN (ref. 2) is a general purpose digital computer program=. for the analysis of large complex structures. The second program, SAP IV (Structural Analysis Program), was executed on an IBM-370, Model 158 computer at Virginia Polytechnic Institute \& State University through the computer center at Old Dominion University. SAP IV (ref. 3) is a structural analysis program for static and dynamic response of linear systems. Symmetry of loading, geometry, and material properties:made the analysis of only. one quarter of the specimen sufficiento

NASTRAN embodied a finite element approach, wherein the distributed physical properties of the shear specimen were represented by a model (fig. 3) consisting of 490 membrane elements. that were interconnected at 529 grid points. ' The grid point definition formed the basic framework for the structural model. All other parts of the structural model were referenced either directly or indirectly to the grid points. Each grid point had: two degrees of freedom, the in-plane displacements. The elements: used in the analysis were the quadrilateral membrane element CQDMEM and the triangular membrane element CTRMEM.

The steel edge bars of the test specimen were represented: in"NASTRAN as rigid boundaries. The rigid boundaries were modeled using multipoint constraints in the NASTRAN program The constraints were applied to grid points on the test frame edge of the finite element model so that these points deformed: as a straight line. 'Static"loads were applied to the structura] model through nodes constrained to the rigid boundary.

The loads were from Langley Research Center Test 560, Runi 7r a horizontal load of 5004.9 lb and a vertical load of 5039.4. Ib are shown in figure 3 at the points of application.

SAP embodied a finite element approach where the shear specimen was represented by a model (fig. 4) consisting of 554 membrane elements that were interconnected at 595 nodal points.

The steel edge bars of the test specimen were represented in SAP as deformable boundaries. The deformable boundaries were simulated by the addition of 64 plane stress membrane elements to the NASTRAN model. The horizontal and vertical applied loads were represented by'ștatically equivalent loads applied along the simulated boundary. Nine colinear loads were applied at nodal points nearest the center of each bolt hole. These loads were applied at an angle of 45 degrees. The magnitudes of these applied laads are given in figure 4. Stresses were computed at the centroid of each element using the stress print option available in SAP.

The titanium doublers used for local reinforcement at corner radii were modeled with an addition of 21 finite elements on existing elements at the extreme corner of the sandwich panel. The material elasticity matrix for titanium and borsic aluminum is given in table 1.

Table l. Material elasticity matrix.

$$
\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\underline{\tau_{x y}}
\end{array}\right\}=\left[\begin{array}{lll}
G_{11} & G_{12} & G_{13} \\
G_{12} & G_{22} & G_{23} \\
G_{13} & G_{23} & G_{33}
\end{array}\right]:\left\{\begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{x} \\
\gamma_{x y}
\end{array}\right\} ; p_{i}
$$

	G_{11}	G_{12}	G_{12}	G_{22}	G_{23}	G_{33}.
Borsic Aluminum	$2.81 \mathrm{E}+7$	$5.65 \mathrm{E}+6$	0	$2.81 \mathrm{E}+7$	0	$9.5 \mathrm{E}+6$
Titanium	$:$	$1.81 \mathrm{E}+7$	$6.15 \mathrm{E}+6$	0	$1.81 \mathrm{E}+7$	0

The NASTRAN finite element model of the shear panel, simulating a rigid boundary, had 1000 degrees of freedom. Using a CDC-6400 computer, it took 945 CPU seconds for the program to execute. In contrast to the NASTRAN model, the SAP finite model
had 1132 degrees of freedom with a bandwidth of 1106. Due to the excessive storage required by the large bandwidth, the SAP' finite element program. was unable to execute. To optimize the bandwidth, the nodes were renumbered using a computer program, BANSAP. With this renumbering, the SAP program had a final bandwidth of 69. It. then completed execution in 160 CPU seconds:-

RESULTS AND DISCUSSION

The stresses computed in the shear panel for the loads applied to the rigid (NASTRAN) and deformable (SAP) boundary models are given in figures 5 through 8. Normal stresses $\sigma_{\mathbf{x}}$ and σ_{y} are plotted as ordinates with the horizontal and vertical coordinates from the center of the shear panel as abscissae.

The stress distributions along the horizontal and vertical axes of both the rigid and deformable boundary models are uniform near the center of the specimen. The uniform stress values differ considerably between. the two models; the uniform normal stressam predicted.by the rigid boundary model. are nearly three times the stresses predicted"assuming a deformable boundary. These results indicate that the assumption of a rigid boundary should. not be made.

There is an appreciable stress concentration at the corner. fillets. . The stress components perpendicular to the lines of symmetry rise sharply at the corners. For example, figure 7 shows that in the deformable boundary model the stress component. σ_{y}.increases from 10 ksi to about 105 ksi indicating a stress concentration factor of over 10.

Contour plots of the principal shearing stresses for the rigid and deformable boundary models are shown in figures 9 and. 10. The shearing stresses are uniform only over a small portion of the specimen. Figure 10 shows that the shearing stress may vary by as much as 25 percent over the center one-half of the specimen.

The effect of the reinforcing titanium doubler on the normal stresses σ_{x} and σ_{y} is shown in figures 11 through 14. These results indicate that the doubler significantly reduced the stresses along the x-axis near the fillet. The critical stress σ_{y} on this axis was reduced by about one-half. However, stress distributions along the vertical axis and in the center of the shear panel show no reinforcing effects of the titanium doubler.

The contours of the principal shearing stress in the specimen with the titanium doubler are shown in figure 15. By comparing this figure with figure 10 it can be seen that the doubler tended to reduce the region of nearly uniform shearing stress since the contours in figure 15 are closer to the center of the panel. As expected there is also an appreciable local disturbance in the shearing stresses in the vicinity of the doubler.

IONCLUDING REMARKS

Two finite element analyses of a picture frame shear test of a borsic aluminum test specimen have been performed. Two. methods for modeling the specimen test frame have been investigated. - Results for nominal stresses and principal shear stress have been presented for Test. 560, Run 7 conducted at Langley Research Center.

- There were striking differences in the stress distributions predicted by the rigid (NASTRAN) and deformable (SAP) boundary models. . It was found that it is not realistic to assume the test fixture to be a rigid frame. In the, regions of nearly uniform stress, the stresses predicted by the deformable. boundary models"were approximately one third of the stresses predicted by the rigid boundary model. In the vicinity of the corner, the stresses predicted by the two models nearly coincided.

The constant principal shear stress, $\tau_{\max }$ was uniform over only a very small region in the center of the shear panel specimen. Moreover, at the corners near the fillets, there were steep gradients with stresses being highly concentrated.

The effect of a local reinforcing titanium doubler has been evaluated. It was found that the doubler reduced the maximum nominal stress in the vicinity of the fillet by about 50 percent.

REFERENCES

1. "Advanced Composites Design Guide", Air Force Materials Laboratory, •F33615-71-C-1362 (USAF, dated January 1973). Wright-Patterson Air Force Base, Ohio 45433.
2. McCormick, C.W., Ed., The NASTRAN Users'-Manuals, NASA, June 1972.
3. Wilson, E.L., Peterson, F.E., and Bathe, K., SAP IV: - A Structural Analysis Program for Static and Dynamic Response of Linear Systems, Report No. EERC 73-1l, Engineering Analysis Corporation, Berkeley, California, June 1973.

Figure 1. Picture Frame Shear Test Experimental Setup at Langley Research Center.

Figure 2. Schematic of Test Specimen.

554 MEMBRANE ELEMENTS

ELEMENTS USED TO MODEL STEEL FRAME MEMBER

Figure 4. SAP Finite Element Model of Shear Panel (Deformable Boundarv).

Figure 5. Normal Stress σ_{x} as a Function of Horizontal Coordinate Along ${ }^{x}$ Center Line of Shear Panel

Figure 6. Normal Stress σ as a Function of Vertical. Coordinate Along ${ }^{\mathrm{X}}$ Center Line of Shear Panel Specimen:

Figure 7. Normal-Stress σ_{y} as a Function of Horizontal Coordinate Along ${ }^{Y}$ Center Line of Shear Panel Specimen.

Figure 8. Normal Stress σ_{y} àse a Function of Verticai Coordinate Along ${ }^{\text {Y }}$ Center Line of Shear Panel Specimen.

Figure 9. Contours of Constant Principal Shear Stress, remax Predicted by NASTRAN (Rigid Boundary).

Fiaure 10. Contours of Constant Principal Shear Stress, $\mathrm{I}_{\text {max' }}$. Predicted by SAP. (Deformable Boundary).

Figure 1l. Normal Stress σ_{x} as a Function of Horizontal Coordinate Along ${ }^{x}$ Center Line of Shear Panel Specimen.

Figure 12. Normal Stress σ_{x} as a Function of Vertical Coordinate Along ${ }^{x}$ Center Line of Shear Panel Specimen.
the centroidal coordinate of the finite elements bordering the hole. Comparison of figures 6 through 8 and figure 10 shows that qualitatively the finite element analysis of the anistropic composite and the isotropic elasticity solution are in close agreement. This agreement serves to validate the finite element. solution.

The varlation of the langitudinal membrane force in an isotropic infinite medium is shown in figure 11 in terms of the x coordinate of the composite specimen to facilitate comparison with the finite element solution given in figure 9. The elasticity solution shows an extremely sharp gradient for the membrane force in the vicinity of the hole. This sharp variation raises questions about the accuracy of the finite element solution in this region. Since the NASTRAN finite element assumed constant stress within the element, it is possible that the peak stress was underestimated because not enough elements were used to . accurately represent the stress gradient. The variation of the stress away from the hole according to the isotropic solution shows that in a distance of about five radii ($5 \mathrm{a}=0.48$ in.) away from the hole the force has decreased to one-tenth of its maximum value. This result supports the findings of figures 6 through 8 in which the membrane force distributions in the center and outside holes were very nearly the same. This: occurred because there were no hole interaction effects since the holes were more than five radii apart. Only very small edge effects were present for the same reason.

CONCLUDING REMARKS

A finite element analysis of an extra graph_.................................. bolted joint specimen has been performed. Two methods were used to represent bolt transfer loads. The first method assumed a perfect fit and modeled the bolt loading as a cosine distributan over one-half of the boundary of the hole. The second method assumed an imperfect fit and used a nonlinear computer analysis to determine the contact area and bolt transfer loads. The

[^0]

Figure 15. Contours of Constant Principal Shear Stress, $\tau_{\text {max }}$ Predicted by SAP (Deformable Boundary wïth Reinforcing Titanium Doubler).

BANSAP: A BANDWIDTH REDUCTION PROGRAM FOR.SAP IV

By

Donna E. Holzmacher

BANSAP: A BANDWIDTH REDUCTION PROGRAM FOR SAP IV

By

Donna E. Holzmacher

INTRODUCTION

For analysis, a structure may be broken down into parts known as finite elements. The elements of the structure may be one-dimensional such as a rod, two-dimensional such as a triangle; or quadrilateral, or three-dimensional such as a parallelepiped. The elements are positioned and described by nodes which, when connected, describe the structure. Static analysis using finite. elements_is accomplished by solving simultaneous equations. These equations when written in matrix form are characterized by banded coefficient matrices. Computer time and storage car be saved if the bandwidth of the matrix is a minimum. This occurs with adept numbering of the nodal points of the structure. If. the nodes are numbered in an optimum way the non-zero values in the matrix will lie in a band about the diagonal. The bandwidth of a matrix is defined here as the maximum difference between any two connected nodes plus one to take into account the diagonal term.

As a particular example, consider the plane structure shown in figure 1. The displacements of this structure are determined by solving

$$
\text { (K) }\{U\}=\{P\}
$$

where (K) is the stiffness matrix, $\{U\}$ is the displacement vector, and $\{P\}$ is the load vector. The (K) matrix is arranged according to the connectivity of the nodes 1 through 9 of the triangular elements. The connectivity matrix for the above structure is represented in figure 2 showing that node 1 is connected to nodes 2,8 , and 9 , and node 2 is connected to
nodes $1,2,3,4$, and 9 , etc. The actual values in the stiffness matrix, corresponding to the positions of the matrix above, depend on the geometry and material of the structure.

The bandwidth of the connectivity matrix shown in figure 2 is 9. If the nodes are renumbered as in figure 3, the corresponding connectivity matrix as shown in figure 4 has a new, reduced bandwidth of 4 .

In order to efficiently renumber the nodes of structures for finite element analysis a number of algorithms have been developed and incorporated into bandwidth reduction programs. Prior to 1969, authors who developed techniques to reduce the bandwidths of matrices included Always and Martin, Tewarson, Rosen, and Akyus and Utku (refs. I through 4). In 1969, Cuthill and McKee's (ref: 5) algorithm arranged the rows of the connectiv̈ity matrix with regard to the increasing number of nonzero off-diagonal elements. This algorithm was used in a proqram called BANDIT which serves a a preprocessor for NASTRAN.
H.R. Groom's algorithm for bandwidth reduction was intro duced in 1972 (ref. 6).. Groom systematically moved closer to gether rows and columns which were far apart and coupled.

In 1973, Collins (ref. 7) presented the algorithm upon which the program, BANSAP, developed in this study is based. After work on BANSAP had begun, Rodrigues (ref. 8) preșented a new algorithm which, for two sample problems presented, showed a smaller bandwidth than the Cuthill and McKee, the Groom, or the Collins algorithms.

The objective of this paper is to describe a study undertaken to incorporate the Collins bandwidth algorithm in a data preprocessing computer program for the finite element program SAP IV (Structural Analysis Program - IV). First to be presented will be Collins' algorithm for bandwidth reduction which contains two subroutines, SETUP and OPTNUM. A description of the SAP IV preprocessing program BANSAP will then be given including its capabilities and limitations. Results from application of the
program to example problems will be presented and discussed. User instructions, the BANSAP program listing, and sample output are presented in appendices.

COLIINS BANDWIDTH REDUCTION ALGORITHM

Collins' algorithm for bandwidth reduction includes two subroutines, SETUP and OPTNUM. His procedure shall be illustrated using the structure in figure 1.

In the first subroutine, SETUP, a list is generated showing the connections between the different nodes shown in figure 1. The relations established by SETUP are displayed in table 1. The information is stored in arrays suitable for use in subroutine OPTNUM. . The subroutine SETUP also determines the original bandwidth of the structure.

The subroutine used to renumber related nodes is OPTNUM. OPTNUM locates the origin of the different numbering schemes at each node in turn, making the number of permutations of schemes equal to the number of nodes. In other words, OPTNUM first renumbers the nodes around old node number one making old node number one the origin of the new scheme. " OPTNUM then determines the bandwidth of this scheme. Next OPTNUM goes to old node number two and starts its new origin in the position of this node. It renumbers the nodes connecting node two, one at a time, and determines the maximum difference between the new connected nodes. If the maximum difference is less than the lowest maximum difference of the preceding schemes, it continues. with the renumbering until the scheme is complete. If not, the current scheme is abandoned. After completion or abandonment. of a scheme, OPTNUM proceeds to the next scheme starting with a new origin at the next sequential old node number. The scheme which is retained by OPTNUM is that which exhibits the lowest maximum difference between related nodes. The sequence of renumbering schemes for figure 1 is shown in table 2.

Collins' algorithm is set up to handle the renumbering of nodes for elements containing up to four nodes. Reference 5 indicates that this method has been applied to solid elements but not very successfully.

SAP IV PREPROCESSING PROGRAM

A program, BANSAP, has been written using the Collins algorithm as a preprocessing program for SAP IV. BANSAP consists of four subroutines: SAPIN, SETUP, OPTNUM, and SAPOUT as shown in figure 5.

The first subroutine, SAPIN, reads the data in the formats stipulated by SAP IV and stores element and node connections according. to type. BANSAP. is set up to handle two basic types of finite elements: elements connecting two nodes, and elements connecting three or four nodes. The two node elements which can be entered into subroutine SAPIN are either the truss, beam, or boundary. The actual renumbering of a two node element is the same for either element. The only difference in the handling of these elements by. BANSAP is in their SAP IV formats.. The three or four node elements which may be entered into subroutine SAPIN include membranes, axisymmetric two-dimensional elements and plate bending elements. - Again, the only difference in the handling of these three and four node elements is in their SAP IV formats. If more than one type of element comprises the structure, the elements may be grouped according to their type. As is required for $S A P I V$, nodes must be sequentially numbered from one.

From subroutine SAPIN, BANSAP goes on to subroutines SETUP and OPTNUM. The new bandwidth is printed and a list of old number node numbers and new numbers is generated. As a user option the subroutine SAPOUT will punch the original elements with the new node numbers. Program BANSAP has been dimensioned in this paper to permit up to 1000 nodes and 1000 elements.

APPLICATIONS OF BANSAP

Applications of BANSAP are presented in table 3. The first two problems shown are illustrations of reduction in bandwidth which may be attained for simple problems. Problem 3 is an example taken from structurai analysis of a ship radar tower. The last two entries are practical problems encountered in finite analysis of composite material structures.

The first illustration is the sample finite element scheme shown in figure 1. After renumbering by BANSAP the bandwidth was reduced from 9 to 4 and the final scheme is shown in figure 3.

The truss problem shown in figure 6 a is a wagonwheel. After processing by BANSAP the bandwidth was reduced from 9 to 6 . It has been found, however, that this value is not the optimum bandwidth. Collins has noted that the wagonwheel problem is a. special case and the true optimum bandwidth occurs when the node_number of the hub of the wheel is set equal to half the number of spokes plus one. The optimum bandwidth of the wagonwheel shown in figure 6 is actually 5 .

The third structure is the ship's radar tower shown in figure 7. The original numbering scheme shown is nearly optimum with \ddot{a} bandwidth of 12 since the renumbering scheme only reduces. the bandwidth to 9. For such structures there is no appreciable gain by using BANSAP as the structures could easily be numbered by.hand to obtain a small bandwidth.

The shear panel of figure' 8 is an example of a greatly enlarged bandwidth which can occur from the addition of new finite elements after the original structure has been numbered. With the addition of new elements for the shear panel a bandwidth of 406 was obtained, but after BANSAP, the bandwidth was reduced to 35 .

The bolted joint specimen illustrated in figure 9 is a.good example of how BANSAP can be used to obtain an optimum bandwidth when the numbering scheme is difficult to select. by hand. The
nodes of the bolted joint specimen were originally numbered to permit easier data generation using a FORTRAN program. After the cards had been generated, BANSAP renumbered the nodes to reduce the bandwidth from 168 to 28.

CONCLUDING REMARKS

A FORTRAN program has been written for bandwidth reduction by nodal renumbering. The program is based upon the Collins algorithm and serves as a data preprocessor for the finite element program SAP IV. Applications of the preprocessing program to a number of simple and realistic problems have been presented.
-Nodal renumbering for finite element analysis may be required for a variety of reasons. Renumbering may be needed if new elements were to be added onto a previously numbered stَructure or if a structure is difficult to optimally number by hand. It may also be needed if the element and nodal data were prepared by data generation programs. Such reasons clearly show a need and use for a program such as BANSAP:

BANSAP is an effectuve preprocessing program for SAP IV. The-algorithm used greatly reduces the bandwidth for reduced computer time and storage during the finite element analysis.

APPENDIX A
USER INSTRUCTIONS

USER INSTRUCTIONS

CONTROL CARD (3I5)

Columns $1-5$ Number of different groups of elements
6 - 10 Total number of nodes
11 - 15 The number zero for nopunched output and any number greater than zero for punched output

The following types of elements are permitted in the program. Type 1 TRUSS

CONTROL CARD (3I5)
Columns 1 - 5 The number 1
6 - 10 The number of eнemenls in yruup .
Element Data Cards (3I5, 2Al0)
Columns 1 - 5 Element number
6 - 10 Node number I
11 - 15 Node number J J

Type 2 BEAM

CONTROL CARD (3I5)
Columns 1-5 The number 2

- . 6-10 The number of elements. in group 2

Element Data Cards ($415,5 \mathrm{Al} 0$)
Columns : 1 - 5 Element number
6 - 10 Node number I
11 - 15. Node number J
16 - 20 Node number K ; K is any nodal point which lies in the local l- -2 plane but not on the 1 axis (see ref. 9, page iv.2.2)

Type 3 MEMBRANE

CONTROL CARD (3I5)

Columns 1-5 The number 3
6 - 10 The number of elements in group 3
Element Data Cards (5I5, 5Al0)
Columns l-5 Element number
6-10 Node number I
11 - 15 Node number J
16 - 20 Node number K
21-25 Node number L

Type 4 TWO D

CONTROL CARD (3I5)
Columns 1 - 5 The number 4 6-10 The number of elements in group 4

Element Data Cards (5I5, 5A10)
Columns 1-5 Element number
6 - 10 Node number I
11:- 15 Node number J
16-20 Node number K 21-25 Node number I

Type 6 PLATE

CONTROL CARD (3I5)
Columns 1 - 5 . The number 6 6 - 10 Number of plate elements

Element Data Cards (5I5, 5Al0)
Columns . 1 - 5 Element number 6 - 10 Node number I 11 - 15 Node number J 16 - 20 Node number K 21-25 Node number L.

TYpe 7 -BOUNDARY (LINEAR SPRING)
CONTROL CARD (3I5)
Columns 1 - 5 The number 7 .
. 6 - 10 The number of elements in group 7.
Element Data Cards (2I5, 6Al0)
Columns $1-5$ Node N, at which the element is placed 6 - 10 Node I

APPENDIX B

'BANSAP SOURCE•IISTING

```
            PROGRAM BANSAPIINPUT,OUTPUT,PUNCH,
                TAPES=INPUT,TAP E6=OUTPUT,TAPET=PUNCH)
    DIMENSION NEWJT(1000), JOINT(1000)
    COMMON LMENTS,JT(4000), MEMJT(3000),JMEM(1000),JNT(1000)
    COMMON/BAND/IDIFF,MINMAX
    COMMON/CONTR/NELG,ITYPE(5),NEL(5),NODES, IPUNCH
    COMMON/JUNK/A (1000,6)
    COMMON/UNIT/ IN,IT,IP
    IN = 5
    IT = 6
    IP=7
    C
    C JMEM(I) = NUMBER OF NODES TO WHICH A SINGLE NODE IS CONNECTEC
        JT(I) = WORKING ARRAY
        -MEMJT(I) = IDENTITIES OF NODES TO HHICH A NODE IS CONNEGTED
            WRITE(IT,12)
        12 FORMAT(IHI,9(/),
        I'36X,52HBEBBB AAAAA N N SSSSSS AAAAA. PPPPP/
        2 36X,53HB
        4 36X,52HBBBBB -AAAAAAA N N N N NSSS AAAAAAA. PPPPP/.
        5 36X,52HB B A . A N N N N % S A A A P: l
```



```
        WRITE(IT,16)
    16 FORMATIIH1,5X,I9H I N P.U T D ATTA,//,I
    OO 10 I=1,1000
    10 JNT (I)=0
        D0 20. I=1,4000
    20 JT(I) = 0
        00 30 I=1,8000
        30 MEMJT(I) =0
        CALL SAPIN
            SUBROUTIVES SETUP AND OPTNUM FROM/
        -BANDHTOTH REDUCTIGN BY AUTOMATIC RENUMBERING-, R.J. COLLINS..
        INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
        VOLUME 6, 1973, PP 345-356.
    CALL SETJP
```

000035 000041 000043 300045 000047 000051 000070 000073 000075

000102
000103 000105 000112 000116

000117 000117 300117 000117 230117 000117 000121

C
WRITE (IT, 32)
DO $40 \mathrm{I}=1$, NODES
NO $=$ JMEM(I)
$L 1=9 *(I-1)+1$
$\mathrm{L} 2=\mathrm{LI}+\mathrm{NO}-1$
WRITE(IT,34) I,NO,(MEMJT(L), L=L1,L2)
40 CONTINUE
MINMAX $=$ IDIFF +1
WRITE(IT,36) MINMAX
C

C
CALL OPTNUY
MINMAX $=$ MINMAX +1
WRITE(IT,38) MINMAX
WRITE(IT,42)
CALL SAPJUT
32 FORMAT (1H1, $12 \mathrm{X}, 4$ HNODE, $3 \mathrm{X}, 4 \mathrm{HJMEM,16X}, \mathrm{HMEMJI,//1}$
34 FORMAT(11X,215,10X,916)
36 FORMAT $/ / /, 20 X, 20 H O R I G I N A L$ BANDHIDTH $=; I 4$)
38 FORNAT(//,20X,14HNEW 3 ANDW IOTH=, [4)…… ..
42 FORMATI $141,10 X, 33$ HOLD NGDE NUMBER NEW NDOE NUMBER, if STOP
END

000002 000002 000002 000002 000002

000002 000014 000026 300030 000037 000051 000055 300057 000061

SUBRDUTIVE SAPIN COYMON

LMENTS, JT (4000), MEMJT (8000) , JMEM (1000) , JNT (1000) COMYON/BAND/IDIFF,MINMAX COYMON/CONTR/ NELG,ITYPE(5),NEL(5),NODES,IPUNCH COMMON/JUNK /A (1000,6)
COMMON/UNIT/ IN,IT,IP

```
    NELG = NUMBER OF DIFFERENT GROUPS OF ELEMENTSILESS THAN }
    NODES = TOTAL NUMBER OF NODES
    IDUNCH = ZEZO FOR NO PUNCHED OUTPUT, NUMBER GREATER.THAN
    ZERO FOR PUNCHED OUTPUT
    N = ELEMENT TYPE
    NE` = NUMBER OF ELEMENTS OF TYPE N
    LMENT = TOTAL NUMBER OF ELEMENTS
    ITYPS(I) = TYPE OF ELEMENT
    NEL(I) = NUMBER OF ELEMENTS IN A GROUP
```

 ITYPE ELEMENT NUMBER OF NODES
 1 TRUSS 2
 2 BEAM 2
 3 MEMBRANE 3 OR 4
 4 THO D 3 OR 4
 5 BRICK. 8
 \(\begin{array}{ll}\text { BRICK } & 8 \\ \text { PLATE } & 4\end{array}\)
 BOUNDRY 4
 RFAD ELEMENT CARDS AND. STORE CONNECTIONS.
 READ(INTI2) NELG, NODES, IPUNCH
 WRITE(IT, 14) .NELG, NODES, IPUNCH
 DO 200 II= 1,NELG
 READ(IN,12) N,NE
 HRITE (IT, 10) II,NE,N
 WRITE (IT, s0)
 ITYPE(II) \(=\mathrm{N}\)
 NEL(II) =NE
 LMENTS \(=0\)
 READ ELEMENT CONNECTIONS. FOR TRUSS, BEAM, OR BOUNOARY
 ELEMENTS ONLY THO CONNECTIONS I AND J ARE NEEDED. FOR
 C ALL OTHER TYPES FOUR CONNECT LONS ARE POSSIBLE-I,J,K,L.
DO $210 \mathrm{JJ}=1, \mathrm{NE}$
C
GO TO $(1,2,3,3,5,3,7), N$
1 CONTINUE
READ(IN,102') I, J, (A(JJ,L),L=1,2)
102 FORMAT (5X,215,2A10)
GO TO 300
C
2 CONTINUE
READ (IN,104) $I, J,($ A (JJ, L), $L=1,6)$
104 FORMAT (5X,2[5,A5,5A10)
GO TO 300
C
3 CONTINUE
READ(IN,10S) I,J,K,L,(AlJJ,L),L=1,5)
106 FORMAT (5X,415,5A10)
GO TO 300
C
5 CONTINUE
HRITE(IT,138)
108° FORMAT(EXX, +2 HTHREE DIMENSIONAL ELEMENTS NOT IMPLEMENTE),1)
GO TO 200
E.
7 CONTINUE
READ (IN,11J) I,J, (A(JJ,L),L=1,6)
110 FORMA.T(215,6A10)
300 CONTINUE
IF(N.EQ.7) GO TO 20
III = JJ + LMENTS
$J J J=I I I+1000$
JT(III) $=1$
$\mathrm{JT}(\mathrm{JJJ})=3$
IF N N.LE. 2) GO TO 205
$K K K=1 I I+2000$
LLL $=$ III +3000
JT(KKK) $=$ K
C
C
C

090234
300235
000240 000240 000255 000261 000262 000265 000265

000265 000265

000265 000265 300266

```
        IF(K.EQ.L) L=0
        JT(LLL) = L
205 CONTINUE
        WRITE(IT,30) JJ,JT(III),JT(JJJ),JT(KKK),JT(LLL)
    210 CONTINUE
        LMENTS = LMENTS + NE
    200 CONTINUE
    50 FORMAT(1JX,7HELEMENT,5X,IHI,7X,1HJ,7X,IHK,7X,1HL,//)
    10 FORMAT(/,5X,13HELEMENT GROUP,[2,4H HAS,I3,17H ELEMENTS OF TYPE,
        1/)
    12 FORMAT(3I5)
    14 FORMAT( ,2(/)
        1 LOX,25HVUYBER OF ELEMENT TYPES =,15,1
        2 10X;25HNUMBER OF NODAL POENTS =,15,1.
        3. 10X,25HPUNCHED ELEMENT CAROS =,15,1
        4 10X,25H EQ. O NO ,/
        5 10x,254
                            .EQ. }1\mathrm{ YES ,1.
    30 FORMAT(IOX,I5,4[8)
        RETURN
        END.
```

SUBROUTINE SETUP
CDMMON LMENTS，JY（4000），MEMJT（8000），JMEM（1000），JNT（1000） COMMON／BAID／IDIFF，MINMAX
COMMON／CONTR／NELG，ITYPE（5），NEL（5），NODES，I PUNCH
NODES $=$ TOTAL NUMBER OF NODES
JNTI＝ELEMENT NODE UNDE？CONSIDERATION
JSUS $=$ LOCATION IN MEMJT（I）OF BEGINNING OF LIST OF NODES RELATED TO SNTI
LMENT $=$ TOTAL NUMBER OF ELEMENTS
JMEM（I）$=$ NUMBER OF NODES TO HHICH A SINGLE NODE IS CONNECTEI
MEYJT（I）＝IDENTITIES OF NODES TO NHICH A NODE IS COVNECTED
IDIFF ．＝BANDHIDTH＝IDIFF＋1 FOR ORIGINAL SCHEME
IDIFF $=0^{\circ}$
DO $10 \mathrm{j}=1$ ，NODES
$10 \mathrm{JMEM}(\mathrm{J})=0$
DO $60 \mathrm{~J}=1, L M E N T S$
DO $50 \mathrm{I}=1 ; 4$
NEXT STATEMENT DEPENDS ON THE NUMBER OF NODES FOR WHICH THE ＿PRDGRAY IS DIMENSIONED．CUPRENTLY THE MAXIMUM NUMBER DF NODES IS 1000 ．

JNTI $=\mathrm{JT}(1000 *(I-1)+J)$
IF JNTI EQUALS ZERO ALL NDDES DF ELEMENT J have been CONSIDERED．

IF（JNTI．EQ．O）GO TO 60 JSUB $=(J N T I-1) * 8^{-}$
DO 40 II $=1,4$ ：
IF（II．EQ．I）GO TO． 40
NEXT STATEMENT DEPENOS ON THE NUMBER OF NODES FDR HHICH THE PROGRAM IS DIMENSIONED．CURRENTLY THE MAXIMUM NUMBER OF NODES ． IS 1000．．．
related nodes are identified beloh．

```
JJT =JT(1000 * (II-1) +J )
IF(JJT.EQ.O) GO TO 50
```

```
のnのロ
                DETERMINE WHETHER RELATIONSHIP BETWEEN JNTI AND JJT
                    HAS BEEV ESTABLISHED.
            MEYI = JMEM{JNTI}
            IF{MEY1.EQ.O) GO TO 30
            DO 20 III = 1,MEMI
            IF(MEMJT(JSUB +III).EQ.JJT) GO TO 40
                    C
                            C FIND WIDTH OF GRIGINAL MATRIX BANO.
                                    C
                                    20 CONTINUE
                            30 JMEM(JNTI) =JMEM(JNTI) + 1.
            IDUM = JSUB + JMEM(JNTE:)
            MEMJT(IDUM) = JJT
            IF(IABS(JNTI-JJT).GT.IDIFF) IDIFF=IABS(JNTI -JJT)
            40 CONTINUE
            50 CONTINUE
                    60. CONTINUE.
            RETURN
            END
```

SUBREUTINE OPTAUM
DIYENSION VEWJT(1000), JOINT(1000)
COMMON LMENTS, JT (4J00), MEMJT (8000), JMEM(1000), JVT (1000)
COMMON/8AND/IDIFF,MINMAX
COMMON/CONTR/NELG, ITYPE(5), NEL(5), NODES, IPUNCH
COMMON/UNIT/IN,IT,IP

C
C
-

JOINT(I) $=$ WORKING ARRAY
NEWJT(I) = WORKING ARRAY
JNT(I) = NEW NUMBERING SCHEME
-MINMAX = BANOWIDTH = MINMAX+1 FOR NEW SCHEME
MINMAX IS INITIALIZED.
MINMAX $=$ IDIFF
NEW SCHEYE STARTS AT NJDE OF OLD NODE NUMBER IK..
DO 60 IK=1, NODES
DO $20 \mathrm{~J}=1$, NODES
JOINT (J) AND NEWJT (J) INITIALIZEO TO ZERO FOR EACH YEH NUMBERING SC:HEME.
$\operatorname{JOINT}(J)=0$
20 NEHJT $(\mathrm{J})=0$
INITIAL IZE FOR NEW NODE NUMBER ONE.
MAX $=0$
$I=1$
NEHJT(1) =IK
JOINT (IK)=1
$K=1$
30 CONTINUE
JDUM = NEWJTII)
K4 = JMEM (JDUY)
IFIK4.EQ.0) GO TO 45
locate relateo ndoes in memjt (i)。
J JUB $=(\text { VEHJT }(I)-1)^{\circ} \neq 8$

000031 000032 000034 000040 000041 000042

000043

000045 000050 000053 000056 000060 000062 000062 000064 000065. 000071 000074 000075

D0.40 JJ= 1,K4
$K E=$ YEMJT(JSUB +JJ)
IF(JOINT(K5) .GT. O) GO TO 40
$K=K+1$
NEWJT(K) $=K 5$
JOINT(K5)=K
กัดง กั๓
CHECK DIFFERENCE BETHEEN NEW NUMBERS OF RELATEO NODES. NDIFF $=I A B S(I-X)$
C SCHEYE ABANDONED IF DIFFERENCE GREATER THAN BANDH IOTH OF PQIVIOUS SCYEME, NEW SCHEME STARTED. -

IF(NDIFF.GE.MINMAX) GO TO 60
IF(NDIFF.GT. MAX) MAX $=$ NDIFF
40 COVTINUE
IF(K.EQ.NODES)GO TO 50
$45 \mathrm{I}=\mathrm{I}+1$
GO TO 30
50 MIN:AAX $=$ MAA
DO $55 \mathrm{~J}=\mathrm{l}$, VODES.
55. JNT (J) $=$ JOINT (J)

60 CONTINUE
RETURN
END

000002 000002 000002 030002 000002 0.00004 000013 000016 000017 000022 000024 000026 000027 000031 300034 000036 000040
SUBROUTIVE SAPOUT
COMMON LMENTS, JT (4000), MEMJT(8000), JMEM(1000), JNT (1000)
COYMON/CJNTR/ NELG, ITYPE(5), VEL (5), VJDES, IPUNCH
COMMON/JUNK/A (1000,6)
COMMON/UVIT/IN,IT,IP
DO $10 \mathrm{I}=1$, NODES
WRITE (IT, 12) I, JNTII)
10 CONTINUE
LMENTS $=0$
HRITE(IT,14)
DO 20 II=1, NELG.
$\mathrm{N}=\mathrm{ITYPE}(\mathrm{II})$
$N E=N E L(I I)$
DO 21 JJ =1,NE
$I=\mathrm{JTI} \mathrm{JJ}+$ LMENT,
$J=J T I J J+$ LMENTS +1000i
$N I=J N T(I)$
$N J=J N T(J)$
C
C
C
OUTPUT NODE CONNECTIONS ACCORDING TO TYPE.
GO.TO $(1,2,3,3,5,3,7), N$
c
CONTINUE
HRITE(IT, 102) JJ,NI,NJ, (A(JJ,L), L=1,2)
IF (IPUNCH.GT.O)
*HRITE(IP,102) JJ,NI,NJ, (A(JJ,L), L=1,2)
102 FORMAT(3I5,24101
c
GO TO. 21.
2 CONTINUE
$\mathrm{K}=\mathrm{A}(\mathrm{JJ}, 1)$
NK= JNT(<)
WRITE(IT,104) JJ,NI,NJ,NK, (A(JJ,L),L=2,6)
IF (IPUNCH.GT.O).
*WRITE(IP,104) IJ,NI,NJ,NK, (A(JJ,L),L=2,6)
104 FORMAT(4I5,5A10)
GO TO 21...
C
3 CONTINUE
$K=\mathrm{JT}(\mathrm{JJ}+$ LMENTS +2000)
$L=J T(J J+L M E N T S+3000)$

```
000205
0 0 0 2 1 0
000212
000214
000242
000242
000271
000272
000272.
000273
000273
000313
000334
000334
000337
000340
050342
000342
000.342
000342
000343
```

050205 000210 000212 000214 000242 00024 ?

300271
000272 000272 .

000273 000273 000313

000334 000334 200337 000340 050342 000342 000342 000343

```
IF(L.EQ.O) L=K
NK= JNT(K)
NL= JNT(L)
WRITE(IT,106)JJ,NI,NJ,NK,NL, (A(JJ,L),L=1,5)
106 FQRMAT(5I5,5410)
IF(IPUNCH.GT.O)
*HRITㄷ([D,106) JJ,NI,NJ,NK,NL, (A(JJ,L), L=1, 5)
GO TO 21
\(C^{\prime}\)
C
CONTINUE
7 CONTINUE WRITE(TT,108)NI,NJ,(A(JJ,L), L=1,6) -IFIIPUNCH.GT.O)
*WRITE(IP,108)NI,NJ,(AlJJ,L),L=1,6)
108 FORMAT(21.5,6A10)
21 continue
LMENTS = LMENTS +NE
20 CONTINUE
12 FORMAT(15X,I5,13X,15!
14 FORMAT (1H1,//,4X,17HNEW ELEMENT CAROS,//)
.30 FORMAT( 5I5)
TETURN
END.
```

APPENDIX C
SAMPLE BANSAP OUTPUT

3BBBB		AAAAA			N		N	SSSSS	AAAAA		PPPPP	
$B \quad B$	B	A		A	NN		N	S	A	4	P	P
B B	B	A	-	A	N	N	N	S	A	A	P	p
BBBBB		AA AA AAA			N	N	N	SSSS				
B $\quad \mathrm{B}$	B	A		A	N		N	S	A	A	P	
$3 \quad B$	B	A		A	N		NN	S	A	A	P	
SBBBB		A		A	N		\dot{N}	SSSSS	A	A	P	

I NPUTDATA

```
NUMBER OF ELEMENT TYP'ES = 1
NUMBER OF NODAL POINTS =
PUNCHED ELEMENT CARDS =
    .EQ. O NO
    .EQ. 1 YES
```

ELEMENT GROUP 1 HAS 8 elements Of fype 3 ELEMENT - I . J K L

1	1	9	8	-0
2	1	2	9	-0
3	2	4	9	-0.
4	2	3	4	-0
5	8	6	7	-0
6	8	9	6	-0
7	9	5	6	-0
8	9	4	5	-0

```
NODE JMEM
MEMJT
\begin{tabular}{llllllll}
1 & 3 & 9 & 8 & 2 & & \\
2 & 4 & 1 & 9 & 4 & 3 & \\
3 & 2 & 2 & 4 & & & \\
4 & 4 & 2 & 9 & 3 & \(5:\) & \\
5 & 3 & 9 & 6 & 4 & & \\
6 & 4 & 8 & 7 & 9 & 5 & \\
7 & 2 & 8 & 6 & & & \\
8 & 4 & 1 & 9 & 6 & 7 & & \\
9 & 6 & 1 & 8 & 2 & 4 & 6 & 5
\end{tabular}
    ORIGINAL BANDWIDTH = .9
NEW BANDWIDTH= 4
```

OLD NODE NUMBER NEH NODE NUMBER

1	4
2	2
3	1
4	3
5	8
6	8
7	9
8	7
9	5

NEW ELEMENT CARDS

1	4	5	7	7
2	4	2	5	5
3	2	3	5	5
4	2	1	3	3
5	7	8	9	9
6	7	5	8	8
7	5	6	8	8
8	5	3	6	6

REFERENCES

1. "An Algorithm for Reducing the Bandwidth of a Matrix of Symmetrical' Configuration", by Always, G.G. and Martin, D.W.; Computer Journal, Volume 8, 1965, pp. 264-272.
2. "Row Column Permutation of Sparse Matrices", by Tewarson, R.P., Computer Journal, Volume 10, 1967, pp. 300-305.
3. "Matrix Bandwidth Minimization", by Rosen, R., Proceedings of 23rd National Conference, Association for Computing Machinery, Brandon Systems Press, Princeton, NJ, 1968, pp. 585-595.
4. "An Automatic Relabelling Scheme for Bandwidth Minimization of Stiffness Matrices", by Akyuz, F.A. and Utku, S., Journal of the American Institute of Aeronautics and Astronautics, Volume 6, 1968, pp. 728-730.

5: "Reducing the Bandwidth of Sparse Symmetric Matrices", by Cuthill, E., and McKee, J., presented at National. Conference of Association for Computing Machinery, Sar Fransciso, CA, 1969, pp. 157-172.
6. "Algorithm for Matrix Bandwidth Reduction," by Grooms, ï. R . Journal of the Structural Division, ASCE, Volume 98, 1972, pp. 203-214.
7. "Bandwidth Reduction by Automatic Renumbering", by Collins, R.J., International Journal for Numerical Methods in Engineering, Volume 6, 1973, pp. 345-356.
8. "Node Numbering Optimization in Structural Analỵis", by Rodrigues, J.S., Journal of the Structural Division, ASCE, Volume 101, 1975, pp. 361-375.
9. "SAP IV, A Structural Analysis Program for Static and Dynamic Response of Linear Systems", by Bathe, K., Wilson, E.L., and Peterson, F.E., Report No. EERC 73-11, June 1973.

Table 1. Example node connections determined in subroutine SETUP.

Node	Number of Connected Nodes	Connected Nodes 1
2	3	$9,8,2$
3	4	$1,9,4,3$
4	2	2,4
5	4	$2,9,3,5$
6	4	$9,6,4$
7	4	$8,7,9,5$
8	4	$1,9,6,7$
9	6	$1,8,2 ; 4,6, ?$

Table 2: Trail Numbering Schemes Used in OPTNUM.

Table 3. Summary of applications of BANSAP.

Structure	Element Type	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Nodes } \end{aligned}$	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Elements } \end{aligned}$	Old Bandwi.dth	New Bandwidth
Sample problem Figure 1	Membrane	9	8	- 9	4'
Wagonwheel Figure 6	Truss	9	16	9	6
Ship tower Figure 7	Beam	25	65	12	9
Shear panel specimen Figure 8	Membrane	59.5	554	406	35
Bolted join't specimen Figure 9	Membrane	398	349	168	28

Figure 1. $\quad \begin{aligned} & \text { Sample Finite } \\ & \text { Element Scheme }\end{aligned}$

NODE

Figure 2. Connectivity Matrix of Sample Scheme.

Figure 3. Renumbered Finite Element Scheme.

NODE

Figure 4. Connectivity Matrix of Renumbered Scheme.

Figure 5. Flowchart of SAP IV BANSAP Preprocessing Program.

(a) Original Scheme

(b) Renumbered Scheme

Figure 6. Wagonwheel Truss.

ISOMETRIC VIEW

Figure 7. Ship Radar Tower.

Figure 8. Shear Panel Specimen.

TRIANGULAR AND QUADRILATERAL MEMBRANE ELEMENTS

Figure 9: Finite Element Mesh for Composite Bolted Joint Specimen.

FEMESH: A FINITE ELEMENT MESH GENERATION PROGRAM BASED ON ISOPARAMETRIC -ZONES

By
Zoa C. Lane

FEMESH: A FINITE ELEMENT MESH GENERATION PROGRAM BASED ON ISOPARAMETRIC ZONES

By

Zoa C. Lane

INTRODUCTION

Finite element analysis programs greatly facilitate the determination of deformations and stresses in structures. A major inconvenience in utilizing this analysis technique is the large amount of input data required by the computer programs. This data includes, in addition to material characteristics, the node numbers defining the elements and the spatial coordinates for each node.

Current mesh generation methods include for simple problems data preparation by hand, and for more complex problems, the coding and executing of ${ }^{\text {FORTRAN }}$ mesh generation programs which generate. data for a-general structure.
W.R. Bụell and W.A: Bush surveyed some techniques used in current mesh generation schemes (ref. 1). The techniques presented by Buell and Bush are: a straight line interpolation technique, a sides and parts technique for axisymmetric structures electro-mechanical techniques for two- and three-dimensional struictures, and a simplified finite difference technique and equipotential technique for general structure shapes.

The advantages of general structure mesh generation programs (ref. 1) are: (1) reduced cost due to reduction of man hours and computer time needed to generate and check data; (2) reduced number of errors; (3) insured regularity of finite elements; and (4) application to a variety of structural shapes.
O.C. Zienkiewicz (ref. 2) utilizes a technique involving the mapping of isoparametric quadrilaterals from a natural to a cartesian coordinate system in an automatic mesh generation
scheme for plane and curved surfaces. This scheme is applicabie to non-quadrilateral structures if the structure is divided into quadrilateral regions. Zienkiewicz's technique for mesh generation was used by S.J. Womack (ref: 3) as a preprocessor for TEXGAP, a finite element program for the analysis of two-dimensional linearly elastic plane or axisymmetric bodies (ref. 4).

The objective of this study is to utilize the technique developed by Zienkiewicz in a mesh generation scheme for twodimensional planar surfaces. Presented in this paper are a description of the mapping technique, a description of the computer program; and three examples of meshes generated by the program. A set of user instructions and a listing of the program are included in the appendices:

INTERPOLATION FUNCTION TECHNIQUE FOR FINITE ELEMENT GENERATION.

The algorithm used by zienkiewicz to map an isoparametric quadrilateral is the displacement interpolation equations used in isoparametric finite elements (ref. 5). The interpolation equations for quadratic bounded surfaces (which are iisted in table 1), are a funçtion of a set of dimensionless coordinates, ξ and η, which define a natural coordinate system.

In the natural coordinate system (fig'. 1), a planar surface is represented as a square whose dimensions are 2×2 units and whose center is at the origin. To map a surface into the cartesian coordinate system, eight boundary points. (x_{i} and y_{i}) and the ξ and η values of each grid point on the surface to be mapped are substituted in the displacement-interpolation functions; the resulting values are the cartesian coordinates of the grid points.

A mesh is generated by dividing the square into the desired number of subdivisions, calculating the ξ and η coordinates for each grid point, and mapping each point to the cartesian coordinate system. A graduation of a generated mesh is obtained
by offsetting the midside node from the midpoint of a side of.the quadrilateral (fig. 2). The generated elements will vary in size along that side; smaller elements will be in the direction of the offset.

Meshes for complex structures are generated by dividing the structure into quadrilateral zones. The mesh for each zone is generated independent of other zones. Connection of zones is accomplished by eliminating node numbers and coordinates which were duplicated on zone boụndaries.

PROGRAM FEMESH

Program FEMESH is a FORTRAN IV code for generating finite element data for two-dimensional planar surfaces. The algorithm used to generate the node coordinates is based on the displace-. ment interpolation functions (table l) described in the preceding paragraph.

Input data for FEMESH includes a title, the number of zones, the total number of zone nodes, the number of zone node coordinates to be read. from cards; the first node and element numbers, a list -of the eight nodes which define a zone, the dimensions of the desired mesh of eaçh zone, and the zone node coordinates.

A zone is a quadrilateral region whose geometry is defined by eight zone nodes. (zone nodes are used only in the input. definition-of the geometry; they are not included in the generated mesh.) The zone nodes are listed in counter-clockwise order. As indicated in figure 3 , the first node identifies a corner of the quadrilateral. The second, fourth, sixth, and eighth nodes are referred to as midside nodes. If a midside node does not lie on the midpoint of a side, a graduation of the mesh results.

The general flow for the mesh generation program, FEMESH, is shown in figure 4. As indicated, the mesh for each zone is generated separately. The first step in the mesh generation scheme is to determine if the coordinates of the midside
nodes are defined (i.e., if their coordinates were supplied by the user). If the coordinates are not defined, the midside node is assumed to lie at the midpoint of a linear line segment. The second step is to determine if either of the four sides of the zone is connected to a zone for which a mesh was previously generated. If a side is connected to such a zone the node numbers and the x and y coordinates which have already been generated are used. The remainder of the mesh is then generated: This process is repeated until the meshes for all zones are generated.

The output of program FEMESH includes a listing of the elements, their four node numbers and the node coordinates. A plot of the mesh is also generated.

APPLICATIONS

Three finite element mesh generated by FEMESH are presented in this section. The first example is a sample problem illustrating the input and output of program FEMESH. The second is a quarter section of a shear panel. The third is a half section of a bolted joint specimen.
\therefore The first example is a simple structure originally used to validate the ability of FEMESH to properly connect zones. The structure (illustrated in fig. 5a) is divided into three zones: The eighteen zone nodes are labeled árbitrarily and illustrated in figure 5 b . Figures 5 a and 5 b represent the input required: by program femesh to generate the mesh illustrated in figures 5 c and 5d. Figure 5 c illustrates the node numbers, and 5 d . illustrates the element numbers.

The input data for this problem is tabulated in table 2 (see Appendix A for user instructions). The data includes a title card, a control card, three zone description cards, and eight node coordinate carcis. The control card specifies the number zones (3), the number of zone nodes (18), the number of zone node coordinate cards to be read (8), the first node
number (100), and the first element number (1000). A typical. zone description card lists the eight zone nodes defining each zone and the size of the finite element mesh to be generated.

The tabulated output for this problem appears in table 3 . The output includes the input data, the element number, the four node numbers which define each element, and the cartesian coordinates of each node.

The shear panel illustrated in figure 6 is divided into four zones. The zones were established in such a way that the straight and curved segments of the corner fillets are assigned to different zones in order to obtain a closer approximation of the true boundary shape.

The mesh dimension for zone I is 20×20, for zone II is 20 x 3 , for zone III is $20 \mathrm{x} \mathrm{20}$,and zone IV is 3 x 30 . To avoid the generation of long, narrow rectangular elements, the midside nodes $2,8,9$, and $14,15,16$ are moved away from the midpoint of the line segment toward the fillets. The input data is summarized in table 4. The output is illustrated in figure 7. Because of the large number of generated elements, the output is not listed in tabular form; it is represented graphically by a' -computer plot of the generated' mesh. The generated mesh is composed of 5.74 nodes and 520 elements.

The mesh for one-half of a bolted joint specimen was generated by dividing the specimen into 15 zones as illustrated in figure 8 . The input data for this problem (table 5) consisted of 58 data cards, including 15 zone description cards; and 41 node coordinate cards. A graduation of the mesh of zones II, IIIf.IV, $\mathrm{V}, \mathrm{VI}, \mathrm{VIII}$, and IX was used to obtain a uniformity in the shape of the generated elements. The generated mesh, which is illustrated in figure 9 , consists of 378 elements and. 435 nodes.

CONCLUDING REMARKS

Program FEMESH, a FORTRAN IV code, has been developed to generate a finite element mesh for two-dimensional, planar
surfaces. The algorithm used is the displacement interpolation functions which were developed for mesh generation by zienkiewicz.

A structure may be subdivided into a maximum of 15 zones. The maximum mesh, for each zone is 24×24 elements (or 25×25 node points). FEMESH will compute a maximum of 4000 node points, and output the node numbers and their coordinates and the element numbers and their four identifying node numbers. A simple plot of the finite element mesh is also generated.

Presented in this paper is a description of the technique used in the mesh generation scheme, a description of program FEMESH and examples of the mesh generated for three problems. User instructions and a listing of the program are included in the appendices.

APPENDIX A

USER INSTRUCTIONS FOR FEMESH

USER INSTRUCTIONS FOR FEMESH

Program FEMESH generates isoparametric finite element meshes for two-dimensional planar surfaces. The input required by the program consists of four types of data cards:- a title card, a control card, zone description cards, and node coordinate cards (fig. Al).

TITLE CARD (Format 10A4).
Column
$1-40$
TITLE \quad Variable \quad Deading for output

CONTROE CARD (Format 6I5):

Column	Variable	Description
$1-5$	IZ	Number of zones ($\mathrm{I} \dot{\mathrm{Z}}$ < 15)
5-10	NT	Total number of zone node
11-15	; NI.	Number of zone node coordinates to be read as input on cards
16-20	INODE	First node number to be assigned to generated mesh
21-25	IELM	First element number to be assigned to generated mesh
26-30..	IP	$\begin{aligned} \text { Punch indicator: } & 0 \text { will not punch } \\ & 1 \text { punch } \end{aligned}$

A zone.is a quadrilateral with either lineär or curved line segments. The geometry of the zone is defined by 8 zone nodes whose coordinates are supplied by the user (see node coordinate card).

The values of NI and NT may differ due to the ability of the program to linearly interpolate to define the coordinates of the midside node if those coordinates are not supplied by the user. Midside nodes are those zone nodes which lie between two corner nodes. It is not necessary that a midside node lie at the midpoint of a line segment.

ZONE DESCRIPTION CARD (Format loI5):

Column	Variable
I-5	NODE (I, I)
$6-10$	NODE $(I, 2)$
$11-15$	NODE $(I ; 3)$
$16-20$	NODE $(I, 4)$
$2 I-25$	NODE $(I, 5)$
$26-30$	NODE $(I, 6)$
$3 I-35$	NODE $(I, 7)$
$36-40$	NODE $(I, 8)$
$41-45$	M

46-50 N

Description

Zone nodes defining zone geometry
I is the zone number

Number of subdivisions along the side defined by lst, 2nd, and 3rd zone nodes
Number of.subdivisions along the. side defined by 3 rd, 4 th, and 5th zone nodes.

Zone numbers are determined by the order of the zone description cards. The.first zone description card is assigned the number one, the second is assigned the number two, etc.

The interconnectivity of zones is indicated by assigning a negative magnitude to zone nodes which lie on a side connected to a zone with a smaller zone number. For example; if 4 zones. are connected as shown in figure A2, then the first eight values of the zone description cards should be:

| Card 1: | 1 | 2 | 3 | 7 | 11 | 10 | 9 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Card 2: | -3 | 4 | 5 | 8 | 13 | 12 | -11 | -7 |
| Card 3: | -11 | -12 | -13 | 16 | 21 | 20 | 19 | 15 |
| Card 4: | -9 | -10 | -11 | -15 | -19 | 18 | 17 | 14 |

A side which is divided into M subdivisions must not be connected to a side divided into N subdivisions unless the values M and N are equal.

NODE COORDINATE CARD (Format I5, 2F10.5):

Column	Variable
$1-5$	Node number
$5-15$	x coordinate
$16-25$	y coordinate

This card may be omitted for any midside node which lies on a straight line if a graduation of the mesh is not desired.

A graduation in the mesh occurs when the midside node is offset from the midpoint of the line segment. The smaller elements will be in the same direction as the offset.

Due to a restriction in the FORTRAN coding, a midside node should not be assigned the coordinates $(0,0)$ if the line segment is not a straight line.

Figure Al. ' Input Data Formats for FEMESH.

Figure A2. Simple Structure to IIlustrate Zone Node Input Dața.

APPENDIX B

FORTRAN IISTING OF MESH GENERATION PROGRAM, FEMESH (IRC, CDC-6600 COMPUTER VERSION)

```
    PROGRAM FEMESH
                COUED BY:L. C. LANE
                    MAY 31. 1975
    PROGRAM FEMESH GENERATES FINITE ELEMENT OATA FOR TWO DIMENSIONAL
    PLANAR SURFACES. STRUCTURES MAY BE SUBOIVIOEO INTO AS MANY AS 15
    QUADRILATERAL ZONES. THE MAXIMUM MESH DIMENSION IS 24 X 24 SUBDIVISIONS.
    * NEGATIVE ZONE NUDE NUMBERS FOR A LONE IUENTIFILD BY A NUMBER **N\not=*
        IONICATES THAT.THE NEGATIVE NODE IS CONNECTED TO`A ZONE WHICH IS
        IDENTIFIED BY A NUMBER LESS THAN **Nま\not=.
    ** INODE FIRST NODE NUMBER
    ** ICTZ CURRENT ZONE NUMBER
    * IL TOTAL NUMBER OF ZONES
    ** IL TOTAL NUMBER OF ZONES NONCH WHEN IP=1' ***
                ** M,N NUMBER OF SUBDIVISIONS
    ** IL TOUTAL NUMBER OF ZONES IP PUNCH WHEN IP=1' ***
                            ** NT TOTAL NUMBER OF INPUT NODES
ね*
DIMENSION A(8);,TITLE(10);XNCDE(8) ,YNODE(8
DIMENSION X1(78);Y1(78)
COMMUN ICTZ,IZONE(25;10),NODE(15,25,25),TEMP(25)
COMMON X2(4002),Y2(4002)
CALL PSEUDO
CALL LEROY
* UETERMINE, INPUT - OUTPUT DEVICES
IN = 5
IOUT =6
C
C
1 FORMAT(615)
2 FURMAT(I'OI5)
FuRMAT(15,2F10.5)
```

```
000006
000006
000006
000006
000010
0COO11
000012
000014
000021
000041
000060
0C0066
000074
0C0100
000121
000125
000127..
000140
000152
000155
000156
000157
```

ccocos
000006 000006 000006 cccocs

```
    3 FORMAT(I5,'2Fi,0.5)
    4 \mp@code { F O R M A T I L H , 1 ~ 2 H N O : ~ O F ~ Z O N E S , I ~ シ . , / / / }
    5 \text { FORMAT(1H, I3,1X,815,IX,214)}
    6,FORMAT(IH I I 3,2X,F7-3,2X;F7.3):.
    7 FORMAT(10AS:)
    8 FURMAT(IHI,10A4////
    9 FORMAT(1H,4HZONE,15X,1OHZONE NODES, 18X,1HM, 4X,1HN,/2X,3HNO.,4X,1H
    11,4X,1H2,4X,1H3,4X,2H4,4X,2H5,4X,1H6,4X,1H7,4X,1H8/1
    12:FORMAT (////,IX,4HNODE,4X,2HX,8X,IHY)
C
C
C
INITIALIZE XI ANO,YI TO BE FILLED FROM OATA READ OFF CARDS
DO 34 I=1,78
XI(I) = 0.
Y(II)=0.
34 CONTINUE
C
C
C
* READ INPUT
READ(IN,7)TITLE
REAU(IN,I)IL,NT,NI,INDDE,IELM,IP
READ(IN,2)({IZONE(I,J),J=1,10),I=1,I2)
C
* wrIte inpItT
hRITE(IOUT,8)TITLE
hRITE(IOUT,4IIZ
hRITE(IOUT,9)
HRITEIIOUT,5\II,IIZONE(I,Ji,J=1,10\,I=1,IZ)
WRITE(IUUT,12)
CO 10 J=1,NI
READ(IN,3) I, XI(1),Y1(1)
WRITE(IOUT,6) I,X2II),Y1(1).
10 CONTINUE
* SET COUNTER OF NODE NUMBERS, ICTN AND ZONE,ICTZ
ICTZ =0
ICTN = INODE
NCOR = 0

000160
000161
000162
000163
000165
000166
000167
000170
000175
000177 00020

000203
coo2c3

000205
000206
\(0002 \mathrm{C7}\)
000210

000211
000212
000216
000220
000221
000223
000225
000226
0 CO230

000237
```

 DO 35 I=1,1661
 x2(I) = 0.
 Y2(1) = 0.
 35 CONTINUE
 CC 1010 I:1,12
 co 1009 J=1,25
 CO 1008 K=1,25
 NODE(I,J,K)=0
 1008 CONTINUE
 1009 CONTINUE
 1010 CONTINUE
 C
C}100
continue
ICYZ = ICTZ + I
C'
C
ISI = 0
I \$2 =:0
IS3 = 0
. IS4 = 0
C

* PULL from the IzONE ARRAY thE zONE NUKGERS aND THE zONE COOROINATES
DO 20 I= 1,8
IC = IABS(IZONE(ICTZ,I))
XNODE(I) = XIIIC)
YNODE(I) = Yl(IC)
20 CONTINUE
N={ZONE(ICTZ,91
\Lambda = IZONE(ICTZ,10)
NN = N+1
NN=M+1
C
 * title' the output fCR this zone
HRITESIOUT,IIIICTZ
11 FORMAT(1HI,28HCALCULATIONS FOR ZONE NUMBER,I4///1

```
```

. C
C IF NO VALUE IS GIVEN for midpoints, ASSUme a straight line and calculate
C
000237
000241
000242
000244
0c0246
000247
000253
000256
000256
000262
0002t4
000266
000303
000303
000307
000307
cco312
000314
0C0315
000322
000323
000325
0C0330
000330
000336
000336

```
\(C\)
\(C\)
\(C\) THE MIOPOINT:
\(\operatorname{CO} 30 \quad I=2,8,2\)
IF (XNODE (I) ) \(30,25,30\)
25 IF \{YNODE (I) \(30,26,30\)
\(26 K=8-1\)
IF(K) \(30,27,28\)
28 XNODE \((I)=(\operatorname{XNODE}(I+I)+X N O D E(I-1)) / 2\).
YNODE \((1)=(Y N O D E(I+I)+Y N D D E(I-I)) / 2\).
CO TO 30
27 XNOOE (I) \(=(\operatorname{XNODE(1)+XNODE(7)}) / 2\).
YNODE \((I)=\{\) YNODE \(|1\rangle+\) YNODE \((7) \mid / 2\).
30 CDNTINUE
hRITE(IOUT,31)(I,XNCCE(I),YNOOE(I),I=1,8)
31 FORMAT(1H, LOHZONE NOOE , I4,F15.2,F25.2)
KRITE(IOUT.32)
32 FORMAT (///, \(1 \mathrm{X} ; 8 \mathrm{BNODE}\), NO. \(5 \mathrm{~S}, 1 \mathrm{HX}, 8 \mathrm{X}, 1 \mathrm{HY} / 1\)
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
* IF LONE 'NUMBEK IS ONE,FILL NODE ARRAY ANO SKIP TO X y COOROINATE CALCULATIUNS.

IF(ICTZ-1)199,190,201
190 CO \(192 \mathrm{~J}=1\), NN
CO \(191 \quad \mathrm{I}=1\), MM
NODE (I,I,J) \(=I C T N\)
\(I C T N=I C T N+1\)
151 CONTINUE
192 CONTINUE
GO TO 3000
1.99 WRITE(IOUT, 200)ICTL

200 FORMAT \(11 H 1,28 H E R R O R \ldots\) ZONE NUMBER ICTZ =. 141
201 CONTINUE

LETERMINE WHICH SIDES ARE CONNECTED. FILL THE NOUE ARRAY
000356
000360
000363
000365
000375
000377
000400
0C04C0
0C04C2
000405
000407
000417
000421
000422
000422
000424
ccc427
000431
000437
000441
0C0442
```

000336°
000340
000343 000345 000353 CCO355 000356
000356
000360
000363
000365
000375
000377

000400
0 CO 4 CO
0C04C2
000405
000417 000421

000422
000422
0042
000431
000441
000442

```
```

C. SIDE ONE

```
```

C. SIDE ONE
, IF(IZONE(ICTZ,2)\212,220,220
, IF(IZONE(ICTZ,2)\212,220,220
212.CALL FINO(1,3,1)
212.CALL FINO(1,3,1)
CO213 I=1,MM
CO213 I=1,MM
NOOE(ICTZ,1,1)= TEMP(I)
NOOE(ICTZ,1,1)= TEMP(I)
213 CONTINUE.
213 CONTINUE.
ISI = I
ISI = I
C
C
C
C
C
C
220 CONTINUE
220 CONTINUE
IF(12CNE(ICTZ,4))222,230,230
IF(12CNE(ICTZ,4))222,230,230

```
    222 CALL FIND(3,5,2)
```

 222 CALL FIND(3,5,2)
 CO 223 I=1,NN
 CO 223 I=1,NN
 NODE(ICTZ;MM,I) = remP(I)
 NODE(ICTZ;MM,I) = remP(I)
 223 CDNTINUE
 223 CDNTINUE
 1S2 = 1
 1S2 = 1
 C
C
C
C
230 CONTINUE
230 CONTINUE
{F(IZONE{ICTŻ,6))232,240,240
{F(IZONE{ICTŻ,6))232,240,240
232 CALL FIND(5,7,3)
232 CALL FIND(5,7,3)
CO 233 Im1,MM
CO 233 Im1,MM
NODE(ICTL,I,NN)= TENP(I)
NODE(ICTL,I,NN)= TENP(I)
233'CONTINUE
233'CONTINUE
1S3 = 1
1S3 = 1
C
C
SIDE 4
SIDE 4
240 CONTINUE
240 CONTINUE
IF(IZONE(ICT Z,8))242,250,250
IF(IZONE(ICT Z,8))242,250,250
242 CALL FINO(7,1,4).
242 CALL FINO(7,1,4).
CC 243 I=1,NN
CC 243 I=1,NN
NODE(ICTZ;1;1)= TEMP(I)
NODE(ICTZ;1;1)= TEMP(I)
243 CONTINUE
243 CONTINUE
IS4 = l
IS4 = l
250. CCNTINUE

```
    250. CCNTINUE
```

000442
0C0444
000445
000453
000453
000461
000462
000463
000463
000467
00467
000472
0C0474
000474
000476
000477
000501
*
.000503
CCO5C4
0C0505
000506
OCOE1C
000513
co0515
000517

```
```

```
nonono
```

```
nonono
    FILL NODE ARRAY - JUMP THOSE PQSITIONS. ALL READY FILLED
    FILL NODE ARRAY - JUMP THOSE PQSITIONS. ALL READY FILLED
```

 - DO 320 J=1.,NN
    ```
    - DO 320 J=1.,NN
    CO 310 I=1,MN
    CO 310 I=1,MN
    IF(NODE(ICTZ,I,J))315,300,310
    IF(NODE(ICTZ,I,J))315,300,310
    300 CCNTINUE
    300 CCNTINUE
    NOUE(ICTZ,I,j) ='ICTA
    NOUE(ICTZ,I,j) ='ICTA
        ICTN =ICTN + 1
        ICTN =ICTN + 1
        CC TO 310
        CC TO 310
C
C
        ERROR
        ERROR
    315
    315
    continue
    continue
        WRITE (IOUT,316)
        WRITE (IOUT,316)
    316 FORMAT(4BH NODE NIJ FOUND IN ST. N/. 300-320 LESS THAN ZEROI
    316 FORMAT(4BH NODE NIJ FOUND IN ST. N/. 300-320 LESS THAN ZEROI
    310 CONTINUE
    310 CONTINUE
    .320 continue
    .320 continue
    3000 CONTINUE
    3000 CONTINUE
C
C
C
C
C
C
C
C
C
C
    * compute the x-y cooroinates, dmitt previqusly conputed sites.
    * compute the x-y cooroinates, dmitt previqusly conputed sites.
    *,DC, AND CN ARE THE INCREMENTAL VALUES IN THE M AND A
    *,DC, AND CN ARE THE INCREMENTAL VALUES IN THE M AND A
        DIRECTICNS RESPECTIVELY.
        DIRECTICNS RESPECTIVELY.
        PM = M
        PM = M
        RN=N
        RN=N
        CC = 2.1PM
        CC = 2.1PM
        ON = 2./RN
        ON = 2./RN
    C . WRITEIINUT,33IDC,DN
    C . WRITEIINUT,33IDC,DN
        33 FORMATIIH,4HDC=, F5.2,4X,4HDN= .F5.21
        33 FORMATIIH,4HDC=, F5.2,4X,4HDN= .F5.21
        CCC = -1.
        CCC = -1.
        CCN = -1.
        CCN = -1.
    C
    C
        DO 810 J=1,NA.
        DO 810 J=1,NA.
        IF(J-1)731,730,731
        IF(J-1)731,730,731
    730 IF([S1-1)733,51,733
    730 IF([S1-1)733,51,733
    731 IF(J-NN)733,732,733
    731 IF(J-NN)733,732,733
    732 IF(1S3-1)733,51,733
    732 IF(1S3-1)733,51,733
    733 CCNTINUE
    733 CCNTINUE
C
```

C

```
```

000517
000521
0C0523
000526
0CC530
0C0530
000532
000532
0C0534
000536
000540
000541
C00543
000552
000554
000563
000566
000571
000575
CCO6C4
000\in10
000611
000613
000617
000622
000624
0C0635
000635
000635
000637
000642
0'c0642
000044
000646
000650
000654
CCO654
000656
ccce73
000673
000676
ccolCO
C. CO 800 I=1,MM
IF(I-MMI741,734%741
734 IF(IS2-1)739',50,739
C
741 IF(I-1)739,742,739
-742 IF(IS4-1)739,50,739
739 CONTINUE
SI = 1.--CCC
S2 = 1.-CCN
S3 = CCC+CCN-1.
54 = 1.+CCC
;5 = 1.+CCN
\Delta(1)=1./4.*S1*S2*(-CCC-CCN-1.)
1(2)=1.12.*S1*S2*S4
1(3)=1.14.*S2*S4*(CCC-CCN-1.).
1(4) = 1.12**S4*S2*S5
|(5)=,1.14**S3*S4*S5
A(6)=1.12**S 1*S4*S5
A (7) = 1 . 1 4 . * S 1 * S 5 * (- C C C + C C N - 1 .) ~
A(8) = 1./2.*S1*S2*S5
NCOR =NCOR + 1
CO 45 K=1,8.
X2(NCOR) = A(K) * XNODE(K). + X2(NCOR)
Y2(NCOR) = A(K)*YNCDE (K): + Y2(NCCR)
45 CONTINUE
HRITE(IOUT,2000) NCOR,X2(NCOR),Y2(NCOR)
2000 FORMAT(I5,2X,F10.5,2X,F1O.5)
50 CONTINUE
CCC = CCC+DC
800 CGNTINUE
.51 CONTINUE
CCN = CCN + ON.
CCC = -1.
810 CCNTINUE
HRITE(IOUT,54)
54 FORMAT(///,1H,15HNODE NO. MATRIX//
CO 53 J=1,NN
HRITE(IOUT,52)(NODE(ICIZ,I,N),I=1;NN)'.
52 FCRMAT(IX,26[5)
5 3 ~ C O N T I N U E ~
IFIICTZ-IZI1000,4000C,40000
40000 CONTINUE

```
cco7co
000704
cco7C4
000706
0c0710
000711
000713
0C0714
000716
0C0717
coc724
000731
000735
000742
000757
000777
000777
C00777
001001
0C10C3
0 0 1 0 0 6
001010
001013
001017
cC1017
001021
0C1032
CC1032
001034
001036
CClO40
```

cco7co 000704 CCOTC4 000706 000711 000713 0 000714 000716 0 0.0717 cco 724 000735 000742

000757
000777 00777 001001 001003 001006
001010

001013 001017 CC1017 0 C1032 CCIO32 001036 CCI 040

```
```

C C List the element Numbers and defining node nunbers.

```
```

C C List the element Numbers and defining node nunbers.

```
HRITE(IOUT,900)
```

HRITE(IOUT,900)
900 FORMAT(1HL,7HELEMENT, 8X, 1HI,10X,1HJ,10X,1HK,10X,1HL/1
900 FORMAT(1HL,7HELEMENT, 8X, 1HI,10X,1HJ,10X,1HK,10X,1HL/1
CO 930 ICTZ=1,IZ
CO 930 ICTZ=1,IZ
N=IZONE(ICTZ,9)
N=IZONE(ICTZ,9)
N = IZONE(ICTŻ,10)
N = IZONE(ICTŻ,10)
CO 920 J=1,N
CO 920 J=1,N
CO S10 I =1,M
CO S10 I =1,M
II= ! + 1
II= ! + 1
jJ = J + 1
jJ = J + 1
{NO = NODE(ICTZ,I,J]
{NO = NODE(ICTZ,I,J]
JNO = NODE (ICTZ,III,J)
JNO = NODE (ICTZ,III,J)
KNO. = NODE(ICTZ,II;JJ)
KNO. = NODE(ICTZ,II;JJ)
LNO: = NODE(ICTZ,I,JJ)
LNO: = NODE(ICTZ,I,JJ)
HRITE(IOUT,901)IELM,INO,JNO,KNO,LNO
HRITE(IOUT,901)IELM,INO,JNO,KNO,LNO
C
C
PUNCHEG OUTPUT IN FORMAT .FOR USE IN PROGRAM SAP
PUNCHEG OUTPUT IN FORMAT .FOR USE IN PROGRAM SAP
IFIIP .EQ. 1) PUNGH SO2, IELN,INO,JNO,KNC,LNO
IFIIP .EQ. 1) PUNGH SO2, IELN,INO,JNO,KNC,LNO
C
C
901 FORMAT (16,4(6x,15))
901 FORMAT (16,4(6x,15))
902. FORMAT(515)
902. FORMAT(515)
IELM = IELN+1
IELM = IELN+1
910 CONTINUE
910 CONTINUE
920. CCNTINUE
920. CCNTINUE
.930 CONTINUE
.930 CONTINUE
C
C
C
C
C
C
WRITE(IOUT,94U)
WRITE(IOUT,94U)
940 FORMAT(1H1,4HNOCE,11X,1HX,14X,1HY/).
940 FORMAT(1H1,4HNOCE,11X,1HX,14X,1HY/).
CO 950 I=1,NCCR.
CO 950 I=1,NCCR.
WRITE(IOUT,941) INODE,X2(I),Y2(I')
WRITE(IOUT,941) INODE,X2(I),Y2(I')
941 FORMAT(IH ,i5,2(5X,Fl0.41)
941 FORMAT(IH ,i5,2(5X,Fl0.41)
INODE = INODE + . I
INODE = INODE + . I
C
C
SO CUNTINUE
SO CUNTINUE
*
*
STOP
STOP
END

```
        END
```

```
        SUBROUTINE FIND(LPPI,LP2,ISD)
C SEARCHES PREVIOUSLY CALCULATED DATA TO FIND NODE NUMBERS ASSIGNED TO A
C
    ZONE BOUNDARY.
    CCMMON ICTZ,IZONE(15,10),NODE(15,25,25),TEMP(25)
        CCMMON X2(4002),Y2(4002)
C
    LP LOCATION GF PT.ON ZONE ICTZ
        IA =0
        IT =0
C
000010
000011
000013
0C0015
000021
000024
cc0025
000027
0C0030
000030
ccoc32
000034
C60036
0C0037
0 0 0 0 3 7
000043
0c0047
0 0 0 0 5 1
000054
0C0006
ccoocs
0000c6
000007
    C
        CEMP(I)= 9999
        5 CCNTINUE
    CEFINE CORNOR'NOCES ON ZONE'ICTZ
    C
        J1 = IABS{IZCNE(ICTZ,LP1))
    IIZ = ICTZ
    10 112 = 112-1.
            IF(IIL)200,200,110
    110 CONTINUE
C
C
    SEARCH DATA OF ZCNE IIZ
        DO 40 I=1,7,2
        II = 1 + 2
        - IFII-7116,15,16
        15 II=1
        16 CCNTINUE
            K1=\ABS(IZGNE(IIZ,I))
nno
            CCMPARE ICTZ TC IIZ
            IF(JI-K1)30,20,3C
    20 IF(J2-K2)/40,21,40
    30 IF(JI-K2)40,31,40
```

```
000056
0C0060
0000EO
0C0063
000063
000065
00006.5
000066
000066
000C71
000072
0C0074
000075
0c0076
000077
000101
000103
0CO105
000110
0CC110
000112
0C0113
0col16.
000116
0CO120
000123
```

```
000123 NK = I
000125 IF(ISD-2)92,92,SC
0C0130
000130
0c0131
000133
00136
OC0141
000141
000144
OCOL44
000146
0CO146
000150
000150
000157
0C0161
000161
000162
    C 80 CONTINUE
        NK=1
        NK =1
        IF(ISC-2192,92,91
    C
        90 II = MMT + I - I
        GO T0 93
        91 II = NNT + 1 - I
        ,GO TO }9
    9211 = I
    9 3 \text { CONTINUE}
        IF(II) 200,200,94
        94 CONTINUE
    C
        TEMP (II) = NODE(IIZ,MK.NK)
        100 CONTINUE
    2 0 0 ~ C O N T I N U E ~
        RETURN
        END.
```

```
    SUBROUTINE FEMPLT(IL,INODE;NCOR)
    c flOTS THE FINITE ELEMENT MESh
000006
0coce6
C
000006
cc0011
000016
000022
000023
000027
000032
000034
000036
000037
0C0041
00042
CCOO44
0C0045
000053
000061
00067
.C
```



```
C
C
C
C
    C
```

000006

```
        CCMMON ICTZ,IZONE(15,10),NODE(15,25,25),TEMP(25)
        COMMON X2(4002),Y2(4002)
        scale data
        CALL ASCALE(X2,25.,NCOR,1,20.1)
        CALL ASCALE\Y2,13.,NCOR,1,20.)
        XSCALE = X2(NCOF + 2)
        YSCALE = Y2(NCOR + 2)
        IF(XSCALE .GE. YSCALE) SF=XSCALE
        IFIYSCALE .GE. XSCALEJ SF=YSCALE
        CO 100 IC.T L=1,IL
        N= ILONE(ICTZ,9)
        A = IZONE(ICTZ,10)
        CO 90 J=1,N
        OO 80 l=1,M
    C
        II=I + L
        JJ = J + 1
    C
        [EFINE THE 4 nodes of aN ELEmENT
        INO = NODE(!CTZ,!,J) - INODE + I
        JNO = NODE(ICTZ,II,J) - [NODE + I
        KNO = NODE(ICTZ,II,JJ)-INOCE +.l
        LNO = NODE(ICTZ,I,JJ) -INODE + i
        CEFINE THE X ANC Y' COORDINATES OF THE. }4\mathrm{ NODES
        XI = X2(INC)/SF
        XJ= X2(JNO)/SF
        XK = X2(KNC)/SF
```

| 000104 | | $X L=X 2(L N Q) / S F$ |
| :---: | :---: | :---: |
| | ${ }^{\text {C }}$ | |
| 000106 | | $Y \mathrm{I}=\mathrm{Y} 2(\mathrm{INO}) / \mathrm{SF}$ |
| $0 \mathrm{COL10}$ | | $Y J=Y 2(J N C) / S F$ |
| 000112 | | YK = Y2(KNO)/SF |
| CCCL15 | | $Y \mathrm{~L}=\mathrm{Y} 2(\mathrm{LNC)} / \mathrm{SF}$ |
| | $\begin{aligned} & C \\ & C \\ & C \end{aligned}$ | FLOT THE 4 NCDES. |
| 000117 | | CALL CALPLT(XI, Y1,3) |
| 000121 | | CALL CALPLT $(X J, Y J, 2)$ |
| 000124 | | CALL CALPLT(XK,YK,2) |
| ccol 27 | | CALL CALPLT $\left.X^{\prime} L, Y L, 2\right)$ |
| 000132. | | CALL CALPLT(XI, Y , 2) |
| | C | |
| 000135 | 80 | CONTINUE |
| 000142 | 90 | CONTINUE |
| $0 \mathrm{CO144}$ | 100 | CONTINUE |
| 000147 | | RETURN |
| $0 C 0150$ | | END |

REFERENCES

1. W.R. Buell and B.A. Bush, "Mesh Generation - A Survey" an ASME publication, Paper No. 73-WA/DEZ.
2. O.C. Zienkiewicz and D.R. Phillips, "An Automatic Mesh Generation Scheme for Plane and Curved Surfaces by 'Isoparametric' Coordinates", International Journal for Numerical Methods in Engineering, Vol. 3, 519-528, 1974.
3. S.J. Womack, "Shape Function Techniques for Generation of Finite Element Grids", TICOM Report 73-3, August 1973.
4. R.S. Dunham and E.B. Becker, "TEXGAP - The Texas Grain Analysis Program", TICOM Report 73-1, August 1973.
5. O.C. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw-Hill, 1971.

Table 1. The shape functions.

$$
\begin{aligned}
& x=\sum_{i=1}^{8} N_{i} x_{i} \\
& y=\sum_{i=1}^{8} N_{i} y_{i} \\
& N_{1}=-\frac{1}{4}(1-\xi)(1-\eta)(\xi+\eta+1) \\
& N_{2}=\frac{1}{2}\left(1-\xi^{2}\right)(1-\eta) \\
& N_{3}=\frac{i}{4}(1+\xi)(1-\eta)(\xi-\eta-1) \\
& \mathrm{N}_{4}=\frac{1}{2}(1+\xi)\left(1-\eta^{2}\right) \\
& N_{5}=\frac{1}{4}(1+\xi) \cdot(1+\eta)(\xi+\eta-1) \\
& N_{6}=\frac{1}{2}\left(1-\xi^{2}\right)(1+\eta) \\
& N_{7}=\frac{1}{4}(1-\xi)(1+\eta)(-\xi+n-1) \\
& N_{8}=\frac{1}{2}(1-\xi)\left(1-\eta^{2}\right)
\end{aligned}
$$

Table 2. Input Data for Example Problem Shown in Figure 5.

| Example problem | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 18 | 8 | 10.3 | 1000 | | | | | |
| 1 | 2 | 3 | 7 | 11 | 10. | 9 | 6 | 3 | 3 |
| -3 | 4 | 5 | 8 | 13 | 12 | -11 | -7 | 2 | 3 |
| -11 | -12 | -13 | 15 | 18 | 17 | 16 | 14 | 2 | 4 |
| , | | 0. | | 0. | | | | | |
| 3 | | 3. | | 0. | | | | | |
| 5 | | 5. | | 0. | | | | | |
| 9 | | 0. | | 3. | | | | | |
| 11 | | 3. | | 3. | | | | | |
| 13 | | 5. | | 3. | | | | | |
| 16 | | 3. | | 7. | | | | | |
| 18 | | 5. | | 7. | | | | | |

Table 3. Output for Example Problem Shown in Figure 5.

EXAMPLE PROBLEM

NO. OF LONES 3

| ZONE | | ZONE NODES | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| NO. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | N |
| | | | | 2 | 3 | 7 | 11 | 10 | 9 | 6 |
| 1 | 1 | 2 | 5 | 8 | 13 | 12 | -11 | -7 | 3 | 3 |
| 2 | -3 | 4 | 5 | 3 | | | | | | |
| 3 | -11 | -12 | -13 | 15 | 18 | 17 | 16 | 14 | 2 | 4 |

| NODE | X | \boldsymbol{Y} |
| :---: | :---: | :---: |
| 1 | 0.000 | 0.000 |
| 3 | 3.000 | 0.000 |
| 5 | 5.000 | 0.000 |
| 9 | 0.000 | 3.000 |
| 11 | 3.000 | 3.000 |
| 13 | 5.000 | 3.000 |
| 16 | 3.000 | 7.000 |
| 18 | 5.000 | 7.000 |

(cont'd.)

Table 3. Output.for Example Problem Shown in Figgure 5 (continued).

| ELEMENT | I | J | K | L |
| :--- | ---: | ---: | ---: | ---: |
| | | | | |
| 1000 | 100 | 101 | 105 | 104 |
| 1001 | 101 | 102 | 106 | 105 |
| 1002 | 102 | 103 | 107 | 106 |
| 1003 | 104 | 105 | 109 | 108 |
| 1004 | 105 | 106 | 110 | 109 |
| 1005 | 106 | 107 | 111 | 110 |
| 1006 | 108 | 109 | 113 | 112 |
| 1007 | 109 | 110 | 114 | 113 |
| 1008 | 110 | 111 | 115 | 114 |
| 1009 | 103 | 116 | 118 | 107 |
| $101 C$ | 116 | 117 | 119 | 118 |
| 1011 | 107 | 118 | 120 | 111 |
| 1012 | 118 | 119 | 121 | 120 |
| 1013 | 111 | 120 | 122 | 115 |
| 1014 | 120 | 121 | 123 | 122 |
| 1015 | 115 | 122 | 125 | 124 |
| 1016 | 122 | 123 | 126 | 125 |
| 1017 | 124 | 125 | 128 | 127 |
| 1018 | 125 | 126 | 129 | 128 |
| 1019 | 127 | 128 | 131 | 130 |
| $102 C$ | 128 | 129 | 132 | 131 |
| 1021 | 130 | 131 | 134 | 133. |
| 1022 | 131 | 132 | 135 | 134 |

(cont'd.)

Table 3. Output for Example Shown in Figure 5 (concluded).

| node | x | $\boldsymbol{\gamma}$ |
| :---: | :---: | :---: |
| 100 | 0.0000 | 0.0000 |
| 101 | 1.0000 | 0.0000 |
| 102 | 2.0000 | 0.0000 |
| 103 | 3.0000 | 0.0000 |
| 104 | 0.0000 | 1.0000 |
| 105 | 1.0000 | 1.0000 |
| 106 | 2.0000 | 1.0000 |
| 107 | 3.0000 | 1.0000 |
| 108 | 0.0000 | 2.0000 |
| 109 | 1.0000 | 2.0000 |
| 110 | 2.0000 | 2.0000 |
| 111 | 3.0000 | 2.0000 |
| 112 | 0.0000 | 3.0000 |
| 113 | 1.3000 | 3.0000 |
| 114 | 2.0000 | 3.0000 |
| 115 | 3.0000 | 3.0000 |
| 11.6 | 4.0000 | 0.0000 |
| 117 | 5.0000 | 0.0000 |
| 118 | 4.0000 | 1.0000 |
| 119 | 5.0000 | 1.0000 |
| 120 | 4.0000 | 2.0000 |
| 121 | 5.0000 | 2.0000 |
| 122 | 4.0000 | 3.0000 |
| 123 | 5.0000 | 3.0000 |
| 124 | 3.0000 | 4.0000 |
| 125 | 4:0000 | 4.0000 |
| 126 | 5.0000 | 4.0000 |
| 127 | 3.0000 | 5.0000 |
| 128 | 4.0000 | 5.0000 |
| 129 | 5.0000 | 5.0000 |
| 130 | 3.0000 | 6.0000 |
| 131 | 4.0000 | 6.0000 |
| 132 | 5.0000 | 6.0000 |
| 133 | 3.0000 | 7.0000 |
| 134 | 4.0000 | 7.0000 |
| 135 | 5.0000 | 7.0000 |

Table 4. Input for Shear Panel.

| ShEAK Paivel | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 21 | 17. | 1 | 1000 | | | | | |
| 1 | 2 | 3 | 4 | 5 | 8 | 11 | 10 | 20 | 10 |
| -11 | -8 | -5 | 6 | 7 | 9 | 13 | 12 | 20 | 3 |
| -1 | -10 | -11 | 15 | 19 | 18 | 17 | 14. | 10 | 20 |
| -11 | -12 | -13 | 10 | 21 | 20 | -19 | -15 | 3 | 20 |
| 1 | U. | | 0. | | | | | | |
| 2 | 3.0 | | 0. | | | | | | |
| 3 | 4.35 | | 0. | | | | | | |
| 4 | 4.3727 | | . 1040 | | | | | | |
| 5 | 4.435 | | . 185 | | | | | | |
| 7 | 4.0 | | . 35 | | | | | | |
| 8 | 3.825 | | . 025 | | | | | | |
| 9 | 3.975 | | . 975 | | | | | | |
| 11 | 2.31 | | 2. 31 | | | | | | |
| 13 | 2.475 | | 2.475 | | | | | | |
| 14 | 0. | | 3. | | | | | | |
| 15 | . 825 | | 3.825 | | | | | | |
| 10 | . 975 | | 3.975 | | | | | | |
| 17 | 0. | | 4.35 | | | | | | |
| 10 | . 1040. | | 4.3727 | | | | | | |
| 19 | . 185 | | 4.435 | | | | | | |
| 21 | . 350 | 4 | 4.0 | | | | | | |

Table 5. Input for Bolted Joint Specimen.

| BOLTEU JUINT CUMPOSITE STRUCTURE | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 0641 | 1200° | 1000 | | | | | |
| 28 | 2930 | - 21 | 3 | 2 | 1 | - 20 | 2 | 3 |
| -30 | 227 | 76 | 5 | 4 | -3 | -21 | 5 | 3 |
| -7 | -22, -30 | 31 | 32 | 23 | 9 | 8 | 5 | 6 |
| -9 | -23-32 | 24 | 13 | 12 | 11 | 10 | 5 | 3 |
| -30 | 4157 | 56 | 55 | 42 | -32 | -31 | 5 | 6 |
| 49 | 5051 | bo | -57 | -41 | -30 | 40 | 5 | 6 |
| 47 | $48-49$ | -40 | -30 | -29 | $-2 \mathrm{~B}$ | 39 | 2 | 6 |
| -51 | -50-49 | 00 | 61 | 59 | 53 | 52 | 5 | 6 |
| -53 | -59-61 | 43 | -32 | -42 | -55 | 54 | 5 | 6 |
| -61 | 0203 | 44 | 34 | 33 | -32 | -43 | 3 | 6 |
| -32 | -35 -34 | 25 | 15 | 14 | -13 | -24 | 3 | 3 |
| -34 | $35 \quad 36$ | 20 | 17 | 16 | -15 | -25 | 11 | 3 |
| -36 | 3738 | 27 | 19 | 18 | -17 | -26 | 6 | 3 |
| -63 | 6465 | 45 | -36 | -35 | -34 | -44 | 11 | 0 |
| -63 | $66 \quad 67$ | 40° | -38 | -37 | -36 | -45 | 6 | 6 |
| 1 | 0. | 1.5 | | | | | | |
| 3 | 0.13 | 1.5 | | | | | | |
| - 4 | 0.4290 | 1.5 . | | | | | | |
| 5 | 0.5345 | 1.5 | | | | | | |
| 6. | 0.5413 | 1.4035 | | | | | | |
| 7 | 0.5625 | 1.4325 | | | | | | |
| ¢ | 0.63 | 1.4045 | | | | | | |
| y | U.6975 | 1.4323 | | | | | | |
| 10 | 0.7182 | 1.4635 | | | | | | |
| 11 | U. 7255 | 1.5 | | | | | | |
| 12 | 0.3308 | 1.5 | | | | | | |
| 13 | 1.13 . | 1.5 | | | | | | |
| 15 | 1.5 | 1.5 | | | | | | |
| 17 | 3.3 | 1.5 | | | | | | |
| -19 | 4.5 | 1.5. | | | | | | |
| 22 | 0.4292 | 1:284 | | | | | | |
| 23 | 0.8308 | 1:284 | | | | | | |
| 23 | 0. | 1.0 | | | | | | |
| 30 | 0.13 | 1.0 | | | | | | |
| 32 | 1.13 | 1.0 | | | | | | |
| 34 | 1. 5. | 1.0 | | | | | | |
| 36° | 3.3 | 1.0 | | | | | | |
| 38 | 4.5 | 1.0 | | | | | | |
| 41 | 0.4292 | 0.7003 | | | | | | |
| 42 | 0.8308. | 0.7008 | | | | | | |
| 47 | 0. | 0. | | | | | | |
| 49 | 0.13 | 0. | | | | | | |
| 50 | 0.4292 | 0.2992 | | | | | | |
| 51 | 0.5625 | 0.4325 | | | | | | |
| 52 | U. 63 | 0.4045 | | | | | | |
| 53 | 0.6975 | 0.4325 | | | | | | |
| 54 | 0.7255 | 0.5 | | | | | | |
| 55 | 0.6975 | 0.5675 | | | | | | |
| 56 | 0.63 | 0.5955 | | | | | | |
| 57 | 0.5625 | 0.5675 | | | | | | |
| 58 | 0.5345 | 0.5 | | | | | | |
| 59 | 0.8308 | 0.2992 | | | | | | |
| 61 | 2.23 | 0. | | | | | | |
| 63 | 1.5 | 0. | | | | | | |
| 65 | 3. 3 | 0. | | | | | | |
| 67 | 4.5 | 0. | | | | | | |

Figure.1. Mapping of a Quadrilateral from the Natural to the Cartesian Coordinate System.

Figure 2. Ungraded and waded Mesh Generated in the Cartesian System.

Figure 3. Numbering of Zone Nodes.

Figure 4. Flowchart for Mesh Generation Program, FEMESH.

(a) STRUCTURE AND ZONES

$$
m=3 \quad m=2
$$

(b) ZONE NODE

(c) NODE NUMBERS

(d) ELEMENT NUMBERS

Figure 5. Example of Mesh Generation for a Simple Structure.

Figure 6. Zones of Snear Panel.

Figure 7. Mesh Generated for Quartersection of Shear Panel.

| I | | XI | . XII | XIII |
| :---: | :---: | :---: | :---: | :---: |
| VII | | x | XIV | XV |

Figure 8. Zones of Bolted Joint Specimen.

Figure 9. Mesh Generated for, Half Section of Bolted Joint Specimen.

FINITE ELEMENT ANALYSIS OF A COMPOSITE BOLTED JOINT SPECIMEN

By
Earl A. Thornton

FINITE ELEMENT ANALYSIS OF A COMPOSITE BOLTED JOINT SPECIMEN

By

Earl A. Thornton

INTRODUCTION

With high strength and weight savings, advanced composite materials have become increasingly important in aircraft structural design. The full potential for the increase of structural efficiency through the use of advanced composites has not yet been fully realized because of low efficiencies in mechanical joints. The Advanced Composites Design Guide (ref. 1). states that weight savings may be reduced by as much':as 40 percent due to such practical constraints.

In the use of conventional materials, design methods for joints have evolved..over a period of time from data gathered from experimental and. analytical solutions and, in addition, are often based upon rules-of-thumb derived from experience. For advanced composites, such data and experience are relatively limited. To partially fill this need, test programs are underway at Langley Research Center (LRC) to establish data on a number of mechanical joint designs (ref. 2)

The purpose of the present study was to provide analytica: support for the LRC bolted joint test program. Specific objectives of the study were to: (1) determine the laminate stress distribution in an extra graphite reinforced bolted joint specimen, and (2) compare two methods of modeling bolt transfer loads for determination of stress distributions in bolted joints

This paper will describe the finite element model used to represent the bolted joint specimen. The two methods used to represent bolt transfer loads will be discussed. Laminate membrane force distributions predicted by the finite element
analysis will be presented, and force gradients at the bolt holes will be discussed. Differences in the results due to the methods of representing the bolt loads will also be•discussed.

BOLTED JOINT SPECIMEN

The specimen analyzed in this study is the specimen denoted.. as extra graphite reinforced joint specimen number one, reference 2. The specimen is shown schematically in figure 1 with the dimensions used in the analysis. The specimen was fabricated from a basic layup of 15 plies reinforced by additional plies so that in the thick section where the bolt holes are located there are 49 plies. The ply stacking sequences are shown in. figure 2 with cross-sectional details of the layup. Reinforcing. plies increase by 0.1 in. in length per ply over the transition. sention from 40 nlies to 15 plies.

ANALYTICAL PROCEDURES

Finite Element Model

The NASA Structural Analysis (NASTRAN) computer program (level 15.5) was used to compute the laminate stress distributions in the specimen. The specimen was assumed to be inplane stress and due to symmetry only one-half of the specimen was represented with finite elements. The finite element representation is shown in figure 3. The specimen was represented by an assemblage of 349 quadrilateral and triangular membrane elements. The NASTRAN finite elements used have constant stress throughout each element. The mathematical model has 307 grid points and : 573 degrees of freedom. Vertical displacements were set to zero on the top boundary of the finite element model to represent symmetry, and horizontal displacements at the right edge of the finite element model were set to zero to represent clamping in the test fixture.

In the analytical formulation underlying the present NASTRAN elements the element material is assumed homogeneous through the
thickness. The element extensional stiffnesses are obtained internally in NASTRAN by multiplying the material elasticity matrix by the thickness of the element, reference 3. However, the specimen in the present study is characterized by several layers of material which are assumed homogeneous within the individual layers only. Thus for the composite laminate the extensional stiffnesses, $A_{i j}$, were computed externally using laminated plate theory. The stiffnesses were then input to NASTRAN in place of the material elasticity matrix, and the thickness of the specimen was everywhere taken as unity.

The extensional stiffnesses $A_{i j}$, a 3 x 3 .symmetric matrix, were computed from reference 4:

$$
\begin{equation*}
A_{i j}=\sum_{k=1}^{N}\left(Q_{i j}\right)_{k}\left(z_{k}-z_{k-i}\right) \tag{1}
\end{equation*}
$$

where $\left(Q_{i j}\right)_{k}$ denotes the material elasticity matrix for a single layer and $:\left(z_{k}-z_{k-1}\right)$ denotes the thickness of the kth layer. The extensional stiffnesses relate the in-plane membrane forces $\left(N_{X}, N_{Y}, N_{x \dot{Y}}\right)$ to the midplane extensional strains $\left(\varepsilon_{x}, \varepsilon_{y}, \gamma_{x y}\right)$ of the laminate. Since the extensional.stiffnesses were input to NASTRAN in place of the NASTRAN material elasticity matrix, the NASTRAN membrane element stresses $\left(\sigma_{x}, \sigma_{V}, \gamma_{X V}\right)$ were the laminate stress resultants ($N_{x}, N_{y}, N_{x y}$).

In the present analysis the lamina elastic constants were taken as $E_{11}=20 \times 10^{6} \mathrm{psi}, E_{22}=2 \times 10^{6} \mathrm{psi}, \quad G=0.8 \mathrm{i}$ $10^{6} \mathrm{psi}$ and $\nu_{12}=0.3$. Each lamina had a thickness of 0.00542 in. To represent the tapered character of the specimen, extensional stiffnesses were computed for the 19 different cross-sectional layups. The values of the extensional stiffnesses for the specimen are given in table 1.

Bolt Loads

The specimen was analyzed for loading corresponding to the design failure load. This loading, estimated at 21813 lb was assumed to be equally distributed to the three bolts such that the total load transmitted to the specimen per bolt was 7271 lb . In the finite element model, one-half of this load was applied to the center bolt hole and the full value was applied to the lower bolt hole.

Two methods were used to represent the transfer of the bolt forces to the finite element model. In the first approach the bolt was assumed to have a perfect fit, and the load transfer was assumed to take place over 180° of. the bolt hole. . The contact force was assumed to vary sinusoidally over this areaof contact. Equilibrium of the bolt was then used to obtain the relation:

$$
\begin{equation*}
N=\frac{2}{\pi} \cdot \frac{2 Q}{R} \cos \theta \tag{2}
\end{equation*}
$$

where N denotes the contact force per unit arc length, $2 Q$ is the total bolt load; and R is the radius of the bolt hole. The angle θ is measured from a horizontal axis through the hole Equation (2) was used to compute equivalent grid point forces for each grid point in the contact region, $\left(-90^{\circ}<\theta<90^{\circ}\right)$. The equivalent grid point forces were computed by integrating Equation (2) through an angle of -6° to $+6^{\circ}$ at each gridipoint The equivalent grid point loads are shown in figure 4.

In the second approach an imperfect fit was assumed and a nonlinear analysis of the bolt transfer loads was made. This analysis, made using the computer program CONTACT developed in reference 5, consists of increasing the bolt load in increments and determining the number of grid points in contact and their loads at each load increment. The analysis requires as part of its input the flexibility matrix for the bolt hole. This flexibility matrix was obtained from the finite element model by applying unit loads at each node of the center bolt hole. The

16 x 16 flexibility matrix was computed one column at a time for 16 unit load subcases. This matrix was then input to the CONTACT program and the bolt transfer forces were computed for several load increments. . The bolt transfer forces and the region of contact for four load increments including the maximum load are shown in figure 5. These forces were computed using an initial lack of fit of -0.00287 in. This value, as defined in the program, denotes a clearance based upon the radius of the hole.

RESULTS AND DISCUSSION

The membrane force distributions at the center: and outside bolt. holes as predicted by the finite element analysis are . shown.in figures 6^{\prime} through 8. Shown are plots of the radial force N_{r}, the circumferential force N_{θ}, and the in-plane shearing force $N_{r \theta}$ versus the angle θ from the centerline. Predictions based upon the two methods of representing the bolt transfer loads are compared.

There is very little, if any, difference in the membrane forces between the center bolt hole and the outside bolt holes Each bolt was assumed to carry the same bolt load and there appears to be no interaction effects between holes nor edge effects upon the stress distributions in the outside holes. The magnitudes and variations of the membrane forces and the effects of the two methods of representing the bolt transfer loads can thus be discussed with regard to either hole.

The largest radial force intensity (fig. 6) occurs, as might be expected, on the centerline of the bolt hole. The nonlinear bolt ioading method predicts the largest radial membrane forces with a value of 32 kips/in. compression which is about 23 percent higher than the value based upon the cosine bolt loading. The largest circumferential membrane force (fig. 7) of $30 \mathrm{kips} / i n$. tension occurs at an angle of about 75° from the bolt centerline and is also predicted by the nonlinear bolt loading technique.

This stress is about 15 percent higher than the value based upon the cosine bolt loading. The in-plane membrane shear forces (fig. 8) tend to be smaller than the radial or circumferential membrane forces. The largest membrane shear force is about 9 kips/in. and is due to the nonlinear bolt loading. Since the in-plane shearing forces tend to be small, the principal values (not shown) of the membrane forces correspond in magnitude and location to the maximum radial and circumferential membrane forces.

The distribution of the longitudinal membrane force. N_{X} along the specimen centerline is shown in figure 9. At $\mathrm{x}=0$ the membrane force should be zero since this edge is stress free; the small nonzero value is indicative of the error in the finite element solution. The membrane force at the left edge of the bolt hole ($\mathrm{x}=0.5$) rises very sharply due to the-indirect bearing load of the bolt. On the right side of the bolt hole, the force should also be zero since the bolt is not in contact at this point. The finite element solution tends to zero at this point. Away from the hole for increasing x, the membrane force approaches a uniform value given by the total applied force ($21,816^{-1 b}$), divided by the specimen width (3° in.).

- Further insight into the results of the finite element analyses can be obtained by considering an elasticity solution for an isotropic medium. In reference 6, Bickley presents theplane stress elasticity solution for a hole in an infinite medium loaded by a cosine pressure distribution over one-half of the boundary of the hole. Closed form solutions for the stress components are given in polar coordinates in terms of the radius of the hole and Poisson's ratio. Tabulated data of the stress components for Poisson's ratio of 0.25 are also presented.

In figure 10 are shown the membrane force distributions predicted by Bickley for an infinite isotropic medium with a hole equal in radius to the bolt hole in the composite specimen and loaded by the bolt load used in the finite element analysis. The plots are made for $r / a=1.2$ which corresponds closely to
laminated composite material was represented in NASTRAN as a. homogeneous material with equivalent extensional stiffness. Laminate membrane force distributions were predicted.

Comparison of the two methods of representing the bolt transfer loads showed the two methods were in qualitative agreement. The nonlinear analysis estimated membrane forces about 20 to 25 percent higher than the linear analysis. Peak forces were found to be a radial compressive force on the bolt centerline and a circumferential tensile force of the same magnitude at about 70° from the centerline. In-plane shear forces were found to be relatively small. There were little or no interaction effects between holes or boundaries of the specimen. Comparison of the finite element solution with an isotropic elasticity solution suggests that as a rule these effects will not be important for in-plane membrane forces provided offset distances between holes or edges are greater than five hole radii.

REFERENCES

I. Advanced Composites Design Guide, Third Edition, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, Chapter 1.3.
2. "Design and Fabrication of Mechanical Joint Specimens for Graphite-Epoxy Composites", by Hoffman, D.J. and June, R.R., Boeing Commercial Aircraft Company Report D6-41817, May 1974.
3. The NASTRAN Theoretical Manual, edited by R. H. MacNeal, NASA SP-221, September 1970 , pp. 5.8-2 to 5.8-4.
4. Primer on Composite Materials: Analysis, by Ashton, J.E., Halpin, J.C., and Petit, P.H., Technomic Publishing Company, 1969.
5. "Stress and Deflection Analysis of Mechanically Fastened Joints", by Harris, H.G., Ojalvo, I.U., and Hooson, R.E. of Grumman Aerospace Corporation, Air Force Flight Dynamics Laboratory Report AFFDL,-TR-70-49, Maý 1960.
6. "The Distribution of Stress Round a Circular Hole in a plate", by Bickley, W.G., Phil. Trans. Royal Society (Iondon) volume 227A, 1928, pp. 383-415. .

Table 1. Extensional.stiffnesses.

| Section | | $A_{i j} \times{ }^{1} 0^{-6}$ ($\left.\mathrm{lb} / \mathrm{in}.\right)$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A_{11} | A_{12} | ${ }^{\text {c }} \mathrm{A}_{13}$ | $\mathrm{A}_{2} 2$ | A_{23} | $\mathrm{A}_{3} 3$ |
| 1 | 3.01 | 0.932 | $\cdots 0$ | 1.34 | 0 | 0.984 |
| 2 | 2.94 | 0.877 | -0.0492 | 1.27 | -0.0492 | 0.927 |
| 3 | 2.87 | 0.823 | 0 | 1.20 | 0 | 0.870 |
| 4 | 2.65 | 0.816 | 0 | 1.17 | 0 | 0.861 |
| 5 | 2.43 | 0.809 | 0 | 1.15 | 0 | 0.853 |
| 6 | 2.36 | 0.755 | . 0.0492 | 1.08 | 0.0492 | 0.796 |
| 7 | 2.28 | '0.699 | . 0 | 1.01 | 0 | 0.739 |
| 8 | 2.07 | 0.693° | 0 | 0.986 | 0 | 0.730 |
| 9 | 2.00 | 0.639 | -0.0492 | '0.914 | . -0.0492 | 0.673 |
| 10 | 1.92 | 0.584 | 0 | 0.841 | 0 | 0.616 |
| 11 | 1.85 | 0.529 | -0.0492 | 0.769 | -0.0492 | 0.560 |
| 12 | 1.78 | 0.474 | 0 | 0.697 | - 0 | 0.503 |
| 13 | 1.71 | 0.419 | -0.0492 | 0.625 | -0.0492 | 0.446 |
| 14 | 1.63 | 0.364 | 0 | 0.553 | 0 | 0.389 |
| 15 | 1.42 | $\therefore 0.358$ | 0 | 0.531 | 0 | 0.380 |
| 16 | 1.34 | 0.303 | 0.0492 . | 0.459 | 0.0492 | 0.323 |
| 17 | 1.13 | 0.297 | 0.0492 | 0.437 | 0.0492 | 0.314 |
| 18 | 1.05 | 0.242 | 0 , | 0.365 | 0 | 0.258 |
| 19 | . 1.05 | - $0.24{ }^{\text {2 }}$ | - 0 | 0.365 | 0 | 0.258 |

Figure 1. Extra Graphite Reinforced Joint Specimen.

ORIGINAL

| LAMINATE | REINFORCING |
| :---: | :---: |
| PLIES | |

Figure 2. Ply Stacking Sequence for Graphite Reinforced Specimen 1 .

Figure 3. Finite Element Representation of Bolted Joint Specimen.

Figure 4. : Bolt Transfer, Loads for Cosine Load Distribution.

Figure 5. Bolt Transfer Loads from Nonlinear Loading Analysis.
(a) CENTER HOLE

$$
N_{r}
$$

(b) OUTSIDE HOLE

Figure 6. Radial Membrane Force Distributions at the Bolt Holes.

Figure 7. Circumferential Membrane Force Distributions at the Bolt Holes.

Figure 8. Membrane Shearing Force Distributions at the Bolt Hole.

Figure 9: Longitudinal Membrane Force, Distribution Along Specimen Centerline.

- (a) INFINITE ISOTROPIC MEDIUM WITH COSINE BOLT LOADING

(b) RADIAL MEMBRANE FORCE DISTRIBUTION FOR $r / a=1.2$.

Figure 10. Elasticity Solution for Infinite Isotropic Medium with Cosine Bolt Loading.

(c) CIRCUMFERENTIAL MEMBRANE FORCE DISTRIBUTION FOR $r / a=1.2$.

(d) MEMBRANE SHEARING FORCE DISTRIBUTION FOR $\mathrm{r} / \mathrm{a}=1.2$.

Figure 10 (concluded). Elasticity Solution for Infinite Isotropic Medium with Cosine Bolt Loading.

Figure 11. Elasticity Solution for Longitudinal Membrane Force Distribution, Along Specimen Centerline.

[^0]: Figure 14. Normal Stress σ_{y} as a Function of Vertical Coordinate Along ${ }^{\text {Y }}$ Center Line of Shear Panel Specimen.

