112 research outputs found

    The Harsh Welcome of an Industrial City: Immigrant Women in Montreal, 1880–1900

    Get PDF
    Over the span 1880 to 1900, Montreal was a city of newcomers, a majority of them women, and most of them arrived before age 30 from Britain, Europe, the United States, or rural counties of Quebec and Ontario. Young people aged 15 to 29 accounted for a third of the population and half of the recorded labour force. The authors’ analyses of 1881 census data and a 5 per cent sample for 1901 uncover a wide range of factors affecting life transitions. A substantial increase in participation of young unmarried women in the waged labour force was made possible by shifts in the timing of life transitions: the ages at which girls left school, left home, entered the work force, and married. The schedule was affected by migration, and it differed among the three principal cultural communities — French-speaking Catholic, English-speaking Catholic, and Anglo-Protestant. All three groups of women increased their rates of participation in the labour force, but the distinctions based on cultural affiliation persisted in both the scheduling of life transitions and the kinds of work in which they engaged. De nombreux immigrants arrivĂšrent Ă  MontrĂ©al durant les derniĂšres dĂ©cennies du XIXe siĂšcle. Plus de la moitiĂ© d'entre eux Ă©taient des femmes et la plupart arrivaient Ă  un Ăąge plutĂŽt jeune, en provenance de la Grande-Bretagne, d’Europe, des États-Unis, ou encore des rĂ©gions rurales du QuĂ©bec et de l’Ontario. Les jeunes de 15 Ă  30 ans reprĂ©sentaient alors le tiers de la population totale et occupaient la moitiĂ© de tous les emplois dĂ©clarĂ©s. Tirant parti des donnĂ©es du recensement de 1881 et d’un Ă©chantillon de 5 p. 100 de celui de 1901, ce texte examine les facteurs susceptibles d'influencer le parcours de vie des jeunes MontrĂ©alaises Ă  cette Ă©poque : Ăąge auquel elles cessent d’aller Ă  l’école, quittent le domicile familial, commencent Ă  travailler et se marient. L'expĂ©rience migratoire affecte ces trajectoires, qui varient aussi selon la communautĂ© culturelle d'appartenance. Les femmes des trois principaux groupes – franco-catholique, irlandais catholique et anglo-protestant - connaissent toutes une augmentation de leur taux de participation au marchĂ© du travail, mais les trajectoires empruntĂ©es et le type de travail effectuĂ© ne sont pas les mĂȘmes dans tous les groupes

    Archeota, Spring 2019

    Get PDF
    This is the Spring 2019 issue of Archeota, the official publication of SJSU SAASC. Archeota is a platform for students to contribute to the archival conversation. It is written BY students, FOR students. It provides substantive content on archival concerns and issues, and promotes career development in the field of archival studies. Archeota upholds the core values of the archival profession. It is a semiannual publication of the Student Chapter of the Society of American Archivists at the San Jose State University School of Information.https://scholarworks.sjsu.edu/saasc_archeota/1009/thumbnail.jp

    “It’s on your shoulders now” Transitioning from child-to-adult UK cleft lip/palate services: An exploration of young adults' narratives

    Get PDF
    Objectives Treatment for cleft lip and/or palate (CL/P) in the United Kingdom is administered on a standardised pathway from diagnosis to early adulthood, with options to be re-referred in later life. At age 16, patients become responsible for their treatment decisions. Evidence from the wider health literature indicates this transition can be challenging and that this population may require additional support. The present study explored young people's experiences of transition to adult care in the context of CL/P services, with the aim of identifying support needs and informing future service delivery. Design Individual semi-structured interviews were conducted with 15 individuals with CL/P (aged 17–25 years) to explore transition experiences. Interviews lasted an average of 69 min and data were analysed using reflexive thematic analysis. Results Four themes, with subthemes, were identified: 1) Readiness for Transition covered feelings of preparedness and how health professionals approached transition; 2) Making Decisions as an Adult described concerns and considerations when making treatment decisions; 3) Finding and Using Support, reflected the roles of caregivers and peers in developing self-advocacy; and 4) Reflections on Transition Care offered insight into how care could be improved. Conclusion Individuals born with CL/P may experience challenges in becoming responsible for their own care and treatment decisions. The findings of this study indicate that a dedicated transition protocol may be beneficial, such that adolescents are prepared to confidently access and manage their care into adulthood. Opportunities for improvements in transition planning and provision are discussed

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davis, G. E., Baumgartner, M. F., Corkeron, P. J., Bell, J., Berchok, C., Bonnell, J. M., Thornton, J. B., Brault, S., Buchanan, G. A., Cholewiak, D. M., Clark, C. W., Delarue, J., Hatch, L. T., Klinck, H., Kraus, S. D., Martin, B., Mellinger, D. K., Moors-Murphy, H., Nieukirk, S., Nowacek, D. P., Parks, S. E., Parry, D., Pegg, N., Read, A. J., Rice, A. N., Risch, D., Scott, A., Soldevilla, M. S., Stafford, K. M., Stanistreet, J. E., Summers, E., Todd, S., & Van Parijs, S. M. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Global Change Biology, (2020): 1-30, doi:10.1111/gcb.15191.Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata ) and North Atlantic right whales (NARW; Eubalaena glacialis ). This study assesses the acoustic presence of humpback (Megaptera novaeangliae ), sei (B. borealis ), fin (B. physalus ), and blue whales (B. musculus ) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.We thank Chris Pelkie, David Wiley, Michael Thompson, Chris Tessaglia‐Hymes, Eric Matzen, Chris Tremblay, Lance Garrison, Anurag Kumar, John Hildebrand, Lynne Hodge, Russell Charif, Kathleen Dudzinski, and Ann Warde for help with project planning, field work support, and data management. For all the support and advice, thanks to the NEFSC Protected Species Branch, especially the passive acoustics group, Josh Hatch, and Leah Crowe. We thank the field and crew teams on all the ships that helped in the numerous deployments and recoveries. This research was funded and supported by many organizations, specified by projects as follows: data recordings from region 1 were provided by K. Stafford (funding: National Science Foundation #NSF‐ARC 0532611). Region 2 data: D. K. Mellinger and S. Nieukirk, National Oceanic and Atmospheric Administration (NOAA) PMEL contribution #5055 (funding: NOAA and the Office of Naval Research #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244‐08‐1‐0029, N00244‐09‐1‐0079, and N00244‐10‐1‐0047). Region 3A data: D. Risch (funding: NOAA and Navy N45 programs). Region 3 data: H. Moors‐Murphy and Fisheries and Oceans Canada (2005–2014 data), and the Whitehead Lab of Dalhousie University (eastern Scotian Shelf data; logistical support by A. Cogswell, J. Bartholette, A. Hartling, and vessel CCGS Hudson crew). Emerald Basin and Roseway Basin Guardbuoy data, deployment, and funding: Akoostix Inc. Region 3 Emerald Bank and Roseway Basin 2004 data: D. K. Mellinger and S. Nieukirk, NOAA PMEL contribution #5055 (funding: NOAA). Region 4 data: S. Parks (funding: NOAA and Cornell University) and E. Summers, S. Todd, J. Bort Thornton, A. N. Rice, and C. W. Clark (funding: Maine Department of Marine Resources, NOAA #NA09NMF4520418, and #NA10NMF4520291). Region 5 data: S. M. Van Parijs, D. Cholewiak, L. Hatch, C. W. Clark, D. Risch, and D. Wiley (funding: National Oceanic Partnership Program (NOPP), NOAA, and Navy N45). Region 6 data: S. M. Van Parijs and D. Cholewiak (funding: Navy N45 and Bureau of Ocean and Energy Management (BOEM) Atlantic Marine Assessment Program for Protected Species [AMAPPS] program). Region 7 data: A. N. Rice, H. Klinck, A. Warde, B. Martin, J. Delarue, and S. Kraus (funding: New York State Department of Environmental Conservation, Massachusetts Clean Energy Center, and BOEM). Region 8 data: G. Buchanan, and K. Dudzinski (funding: New Jersey Department of Environmental Protection and the New Jersey Clean Energy Fund) and A. N. Rice, C. W. Clark, and H. Klinck (funding: Center for Conservation Bioacoustics at Cornell University and BOEM). Region 9 data: J. E. Stanistreet, J. Bell, D. P. Nowacek, A. J. Read, and S. M. Van Parijs (funding: NOAA and US Fleet Forces Command). Region 10 data: L. Garrison, M. Soldevilla, C. W. Clark, R. A. Chariff, A. N. Rice, H. Klinck, J. Bell, D. P. Nowacek, A. J. Read, J. Hildebrand, A. Kumar, L. Hodge, and J. E. Stanistreet (funding: US Fleet Forces Command, BOEM, NOAA, and NOPP). Region 11 data: C. Berchok as part of a collaborative project led by the Fundacion Dominicana de Estudios Marinos, Inc. (Dr. Idelisa Bonnelly de Calventi; funding: The Nature Conservancy [Elianny Dominguez]) and D. Risch (funding: World Wildlife Fund, NOAA, and Dutch Ministry of Economic Affairs)

    Selective Loss of Cysteine Residues and Disulphide Bonds in a Potato Proteinase Inhibitor II Family

    Get PDF
    Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short) superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C), and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks) ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution
    • 

    corecore