10,524 research outputs found

    Flutter: A finite element program for aerodynamic instability analysis of general shells of revolution with thermal prestress

    Get PDF
    Documentation for the computer program FLUTTER is presented. The theory of aerodynamic instability with thermal prestress is discussed. Theoretical aspects of the finite element matrices required in the aerodynamic instability analysis are also discussed. General organization of the computer program is explained, and instructions are then presented for the execution of the program

    The application of the scanning electron microscope to studies of current multiplication, avalanche breakdown and thermal runaway. Part 1 - General physical basis

    Get PDF
    Scanning electron microscope applications in study of current multiplication, avalanche breakdown, and thermal runaway - Physical basi

    Studies of finite element analysis of composite material structures

    Get PDF
    Research in the area of finite element analysis is summarized. Topics discussed include finite element analysis of a picture frame shear test, BANSAP (a bandwidth reduction program for SAP IV), FEMESH (a finite element mesh generation program based on isoparametric zones), and finite element analysis of a composite bolted joint specimens

    Imaging haemodynamic changes related to seizures: comparison of EEG-based general linear model, independent component analysis of fMRI and intracranial EEG

    Get PDF
    Background: Simultaneous EEG-fMRI can reveal haemodynamic changes associated with epileptic activity which may contribute to understanding seizure onset and propagation. Methods: Nine of 83 patients with focal epilepsy undergoing pre-surgical evaluation had seizures during EEG-fMRI and analysed using three approaches, two based on the general linear model (GLM) and one using independent component analysis (ICA): 1. EEGs were divided into up to three phases: early ictal EEG change, clinical seizure onset and late ictal EEG change and convolved with a canonical haemodynamic response function (HRF) (canonical GLM analysis). 2. Seizures lasting three scans or longer were additionally modelled using a Fourier basis set across the entire event (Fourier GLM analysis). 3. Independent component analysis (ICA) was applied to the fMRI data to identify ictal BOLD patterns without EEG. The results were compared with intracranial EEG. Results: The canonical GLM analysis revealed significant BOLD signal changes associated with seizures on EEG in 7/9 patients, concordant with the seizure onset zone in 4/7. The Fourier GLM analysis revealed changes in BOLD signal corresponding with the results of the canonical analysis in two patients. ICA revealed components spatially concordant with the seizure onset zone in all patients (8/9 confirmed by intracranial EEG). Conclusion: Ictal EEG-fMRI visualises plausible seizure related haemodynamic changes. The GLM approach to analysing EEG-fMRI data reveals localised BOLD changes concordant with the ictal onset zone when scalp EEG reflects seizure onset. ICA provides additional information when scalp EEG does not accurately reflect seizures and may give insight into ictal haemodynamics
    corecore