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FLUTTER: A FINITE ELEMENT PROGRAM FOR ABRODYNAMIC
1. 'STABILITY ANALYSIS OF GENERAL SHELLS OF REVOLUTION
WITH THERMAL PRESTRESS

By
Dennis J. Fallon! and Earl A. Thornton?

SUMMARY

Documentation for the computer program FLUTTER is presented. A general
discussion of the theory of aerodynamic iastability with thermal prestress
is given. Theoretical aspects of the finite element matrices required in
the serodynamic instability analysis are also discussed. Ganeral
organiszation of the computer program is explained, and instructions are then

presented for the execution of the program.
INTRODUCTION

The computer program FLUTTER was written in the course of research
aimed at evaluating the effects of thermal prestressing on aerodynamic
instability (fluiter) characteristics of general shells of revolution.
Specifically, the objective of the research was to compare the conventional
finite element technique to the integrated finite element technique.
Interested readers should refer to reference 1 for further details of the
approach,

The main body of this report presents: (1) concept of aerodynamic
instability, (2) finite element formulations, (3) program organization and

(4) input instructiom.

lAssistant Professor, Department of Civil Engineering, Old Dominion
University, Norfolk, Virginia 23508.

2 pssociate Professor, Department of Mechanical Engineering and Mechanics,
O0ld Dominion University, Norfolk, Virginia 23508.




CONCEPT OF AERODYNAMIC INSTABILITY

The free vibration equations of motion for a finite element analysis
of shell of revolution subjected to the effect of prestressing forces

and aserodynamic pressure is expressed as (2):

k1 {a} + () fa} + 2 (a1 {a} + (M) {a} = {o} (1

where the matrices [Ke]’ [Kg]’ [Ae] and [M] represents the first order '
stiffness, initial stress (geometric), aerodynamic and mass matrices, ‘ ':!k
respectively. The vectors {q} and {;} represent the nodal displacements

and accelerations as a funciion of time. The term A represents an

aerodynamic coefficient which is a function of the stagnation pressure and

the Mach n'mber. The derivation of all matrices in equation (1) is given in

the following sertions. It should be noted that prestressing of the shell

is incorporated through the initial stress matrix.

Now assuming ‘hat the displacem:nt varies as harmonic function of time,
iwt
{a} = {a} e (2)

vhere fa} is a vector of nodal displacement independent of time and w is
the natural frequency of the system, equation (1) reduces to the classical

dynamic equation:
(k1 + R ) + Ma,1 -u? [M]) fq} £ = {0} (3)

For a solution to equation (3) to exist the determinant of the equation in

the parenthesis must vanish. That is
|[R,] + (R ]+ AlA) -~ Ml| =0 (4)

The objective of an aerodynamic instability analysis is to seck a set
of vibration modes that are unbounded in the time domain. This criteria is
achieved when the natural frequencies, w, defined in equation (2) are
complex quantities. When )=0 in equation (4) the problem degenerates into

the calculation of the in-vacuo natural frequencies of the free vibration




case. The matrices lKel, [Kg] and [M] are symmetric, and the eigenvalues

are real.

As ) is increased from zero, two of the eigenvalues approach each .
other and coalesce at a critical value of A designated Acr’ As the value
of A is increased beyond Acr the eiganvalues become complex conjugates.

A typical plot of the natural frequencies (square root of the eigenvalies)
versus the serodynamic constant is illustrated in figure 1(a). Therefore,

the value of Acr represents the onset of flutter of the shell.

As will be shown later the interpolation function used in the finite .:\(
formulation will be a Fourier seriex. Hence, the analysis of a shell
reduces to seeking the eigenvalue solution of equation (4) for each har-
monic. To obtain a complete solulion to a given shell, all harmonics must
be searched to determine the lowest value for A. This is illustrated in
figure 1(b). Interasted readers are referred :o reference 3 for an expedi-

ent technique to determine the critical harmonic.
" FINITE ELEMENT FORMULATION

General Remarks

The classical finite element technique involv.s the modeling of a lscge
complex system by the ass-~umblage of smaller elements (4). For the structur-
al analyses in this report, a geometrically exact shell element was employ-
ed. Figure 2 illustrates a typical element where R, and R, are princi-
pal radii of curvature. This element has been shown to produce excellent
results in the computation of natural frequencies and mode shapes fo
general shells of revolution (5). The interpolation functions for this
element are expressed as a Fourier series in the circumferential direction

and simple polynomials in the meridional direction~ as follows:

u= ) U (s) cos nb
n
n=o

v= ] V(s) sin nb
n
n=0

w= ) W(s) cos nd (5)
n=0 "
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Figure 1. Evaluation of critical aerodynamic coefficient.
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vhere u, v, and w represent displacements in the meridional, circumfer-

ential and normsl directions, respectively; Un, v, "n are simple

n
polynomials expressed as:

lz"'l !3

U, = * .Z,n. * .3,n 4,n

n 1l,n

52 + a 03

ta 7,n 8,n

A =
Jn .S,n 6,n’ ta

= 2 3 N 5
" " %t %10,0% Y %11,n® Y 12,0t 13,00 Y 14,0 (6)

’,I

where a represents the ith generalized coordinate for the nth harmonic;
»

s is the meridional coordinate and 0 is the circumferential coordinate.

At each nodal circle designated by 1 and j in figure 2, there are
] ]
seven degrees of freedom: w, u, v, (w' -%—), u', v', (v -%—) The
1
prime denotes the differentiation with respect to s.

First Order Strain Energy

The first order stiffness matrix defined in equation (1) can be derived
from the first variation of the first order potential energy. The potential

energy for a general shell of revolution is:
1 2 2 2
Ve==[[(Cy) e +2C , € €, + Cpyy €5 + Cgg €,,) T dbds
2
1 2 2 2
+ ; ff (Dll Kl + 2D12 Kl x2 + Dzz Kz + DGG Klz) r dm. (7)

where ¢€,, €,, €3, are first order meridional, circumferential and
shearing strains according to Novoghilov shell theory (6), x|, Kys  K)g

are first order meridional, circumferential and cross curvature according to
Novozhilov shell theory; Ckl and Dkl are elastic stiffness coefficients.
By use of the definitions (see Appendix A) of the strains and curvature
which are explicit functions of the displacements and, with the additional

use of the orthogonality properties of the sine and cosine, i.e.:
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m

Qumw
v 0 w%n; wen=0
| sin nb ein m6do =
o Y  wun
27 0 ww
| cos nd cos m8d0 = {2v wen=0 (8)
° T  wen¥®

the first order stiffness matrix in terms of the nth harwonic is obtained.
Exact expressisn for this matrix can be found in reference 5. Note that
integration with respect to the meridicnal coordinate s was performed

using a ten point Gauss scheme.

Second Order Strain Energy

A consistent initial stress (geowetric) matrix which incorporates the
effects of prestressing is formulated from the cuntribution of the second
order strains in the strain energy expression. This energy is (7):

v, n: ] c(l”r dods + "30 ! ¢(22) r d3ds
(e, - vrt)
(L] (1) r? 46ds
¢ 12 ———22 [ {[e, ¢+ vy B+ [1-V] 8, ¢ ,} =2 (9)
(1=-v2) ! 5 o 112 t? cos ¢

vhere “:a' ";8 are initial stresses and H:., Hze are initial woments
due to prestressing in thé meridional and circumferential directions,
respectively; cEZ), cgz) are second~order strains, ¢ is the slope of the
shell surface in the meridi~nai direction; and B8;, 8g are perturbation
rotations in the mevidional and circunferential directions, resnectively.
The development of the initial stress matrix follows in a similar manner as
the first order stiffness matrix. For definitions of the strains and
rotations in terms of the displacements refer to Appendix A. Integretion
with respact to the wmeridional coordinate was also performed by a ten point

Gauss scheme.

Kinetic Energy

The consistent mass marrix uced in this study was derived frow the

kinetic energy of the system. Specifically, the kinetic energy is expressed
as (5): 7

in sk e a2
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zk--eff {42+ v2+ w2}t rdads (10)
) ,

where p is the mass density; t is Zhe shell thickness and a dot denotes
Jifferentiation with respect tu time.

Aerodynmic Virtual Work

The aerodynamic matrix expresvad in equation (1) was derived from the
virtual work of the aerodynamic forces acting on the shell. These aero-
dynamic forces are formulated using a first order, high Mach number ©1.7)
approximation to linear potential flow theory (8):

o [ own [t ’H'z'-z) v -] r ded (11)
S e ' ——— -~ k;-.- '-— r .
3% U M -1 28

2q 2 1/2 ] .
vhers A = g B = (MS - 1) ; M, is the freestream Mach number, q 1is the
freestream dynamic press ve and U ic the local flow velocity. For exact

expression for the aerodynamic matrix refer to Appendix B.
PROGRAM ORGANTZATION

The computer program consists of four basic steps: (1) reading of
input data, (2) the evailuation of element matrices, (3) the arsembly of
elemen. matrix to form g.obal matrices and (4) the evaluation of eigenvalues
and eigenvectors. A flow chart of “ae program is illustrated in figure
3.

The input data which will be defined in wore detail later in this
report consists of material properties and geometry data of the particular
shell. Such material properties as the modulus of elasticity and Poisson's
ratio are input parameters for the stiffness calculation. The mass density
is required for the evaluation of the mass matrix. These parameters are
assuned to be conastant throughout the shell. Some geometry dats vequired on
input is the length of each element and thickness of the shell (also assused
to be coastant). At presant the program is set up to do conical shells. To
evaluate the flutter boundaries of other shells the subroutine Radius must

be revised. Interested readers are re’erred to reference 5 for & detailed
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procudure on how this may be done. Also an input parameter for the boundary
conditions must te defined. This is done through the boundary condition
code ICASE which has rhe interpretation shown in table 1. A free boundary
condition means all displacements and rotations are released. A freely
supported condition implies that oi.y the normal displacements and the rota-
tion are releassed, whereas in the clamped condition the shell is assumed to
be completely fixed.

The calculation of the member zlement begins with the evaluation of the
transformation matrix per each element. This matrix defines the relation-
ship between the generslized coordinate (see equation ..) and the dilplaéo-
ments and rotations at the ~nds of each element Then per each hermonic the
mass, first order stiffness, aerodynamic and initial stress matrices are
calculated per element. Internal stresses are calculated at each integra-
tion point by a thermal stresa computer program. These stresses are read
off Tapell by FLUTTER.

After element matrices are formed they are superimposed to for:n the
global matrices. Rows and columns are eliminated according to the applica-
ble boundary condition specified by ICASE. Then using a NASA/Langley
Computer Center subroutine complex eigenvalues and eigaovectors are computed
per each specified value of aserodynamic coefficient. This procedure is

repeated per each harmonic specified.
<NPUT PROCEDURE

The following is the procedure per line of input data for the proper

execution of the program. Note all input is free formatted.
First Line: IDEN

IDEN = gny alphanumeric characters to define a particular rum.
Second Line: K, NBEG, FLAST, ICASE

K = number of element;

‘BEG = beginning harmonic;

NLAST = stopping harmonic;

ICASE = boundary condition ~ode.
Third Line: SO

SO = origin of shell's coordinate system

10
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Table 1. Boundary Conditions Codes

Value ICASE Type of Boundary Conditon
1 Free - Free
2 Free - Freely Supported
3 Freely Supported -~ Free
4 Free - 5imply Supported
5 Simply Supported - Free
6 Free - Clamped
7 Clamped - Free
8 Freely Supported - Freely Supported
9 Simply Supported - Simply Supported
10 Clamped - Clamped
11 Freely Supported - Simply Supported
12 Freely Supported - Clamped
13 Simply Supported - Freely Supported
14 Simply Supported - C.amped
15 Clamped - Freely Supported
16 Clamped ~ Simply Supported

11




Fourth Line: E(I) I =1, K

E(I) = length of the ith element; K values required on this
line

Fifth Line: YOUNGl, YOUNG2, XMUl, XMU2, RHO, TH, Gl2

YOUNGL = Young's Modulus in meridional direction; \
YOUNG2 = Young's Modulus in circumferential direction;

XMUL = Poisson's ratio in meridional directionm;

XMU2 = Poisson's ratio in circumferential direction;

RHO = mass dens .cy of shell;

TH = thickness of shell; -7
G12 = shear modulus of shell "y

Sixth Line: MACH, NLAMB, IBUCK X._

MACH = reference Mach number;
NLAMB = number of aerodynamic coefficients;
IBUCK = 0 (aerodynamic stability problem)
= 1 (bifurcation buckling loads - eigenvalues
represent buckling loads).

Seventh Line: LAMB

LAMB = aerodynamic coefficient (This line will be repeated
NLAMB times).

CONCLUDING REMARKS

A finite element program for the computation of the aerodynamic insta-
bility of general shells of revolution with thermal prestress is described.
The theoretical formulation of the finite element matrices is discussed and
input instructions for execution of the program are given. Application of

the program are presented in reference 1.

12

R e ) o ' ! T




3.

Fallon, D.J. and Thornton, E.A., "An Integrated Pinite Element Approach
for Thermal Prestress Effects on Shells of Revolution,"” AIAA/ASME/ASCK/
AHS 23rd Structures, Structural Dynamics and Materials Conference, New
Orleans, May 10-12, 1982,

Yang, T.Y. and Sung, S.H., "Pinite-Element Panel Flutter in Three-Dimen-
sional Supersonic Unsteady Poteantial Flow," AIAA Journal, Vol. 15, No.
12, Dec. 1977, pp. 1677-1683,

Dixon, S.C. and Hudson, M.L., "Flutter, Vibration and Buckling of
Truncated Orthotropic Conical Shells with Generalized Elastic Edge
Restraint,” NASA TN-D-5759, July 1970.

Huebner, K.H. and Thornton, E.A., The Finite Element Method for
Engineers, Second Edition, John Wiley and Sons, 1982.

Adelman, H.M., Catherines, D.S. and Walton, W.C.. "A Method for Computa-~
tion of Vibration Modes and Frequencies of Orthotropic Thin Shells of
Revolution Raving General Meridional Curvature," NASA TN-D—4972, January
1969.

Novoghilov, V.V., Thin Shell Theory Secoand Ei., P. Noordhoff Ltd., 1964.

Lashkari, M., Weingenten, V.I., and Margoleas, D.S., "Vibration of Pres-
sure Loaded Hyperbolic Shells,” Journal of Engineering Mechanics Divi-
sion, ASCE, Vol. 98, No. EMS, October 1972, pp. 1017-1030.

Bismark-Nasr, M.N., "Finite Element Method Applied to Supersonic Flutter
of Circular Cylindrical Shells," Internationsl Journal for Nuwerical
Methods in Engineering, Vol. 10, No.l, 1976, pp. 423-435.

13




e
et R R R I i i et e TN et e . L e N S et <1

ORIGINAL PAGE 18
OF POOR QUALITY

APPENDIX A: EQUATION FOR STRAINS AND ROTATION

Definition of strains and rotations according to Novozhilov shell

theory.
v
El'll' **n—l-
aldv ¢ v
2rw'c 'Y,
1 du r'
€127tV "V
R
xl--v"i'-;—u'-—-l-u
1 2
R,
-l 2w, 1 & e,
1 3% 1 ow 1 . 3" r'v
Kyp ™ == + —1x' —+ st~
12 rd3 , 36 rR; 30 R, rR,
(2) _ 1 jaw _u ¢2 1 (3u . v 12
€ L~ + SR - Vr - r o
£2) o 1 raw _vrg? 1 [ ve' - 272
2 2 96 RZ 8 ¢2 30 ds
8 -—rﬁcu—-
s os Rl

vhere

(') denotes differentation with respect to s.

14
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AERODYNAMIC COEFFICIENTS

Aerodynamic coefficients in terms of generalized coordinates.

| ?/ 2
A ] =
= 77

T

o

0

0

—_—
2s 362 4483 5t

2 52 L 4 ot 5 8% Q
2 o3 3 st 4 o3 5 8
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15

S




	GeneralDisclaimer.pdf
	0013A02.pdf
	0013A02_.pdf
	0013A03.pdf
	0013A03_.pdf
	0013A04.pdf
	0013A05.pdf
	0013A06.pdf
	0013A07.pdf
	0013A08.pdf
	0013A09.pdf
	0013A10.pdf
	0013A11.pdf
	0013A12.pdf
	0013A13.pdf
	0013A14.pdf
	0013B01.pdf
	0013B02.pdf
	0013B03.pdf
	0013B04.pdf
	0013B05.pdf



