314 research outputs found

    Evaluation of the potential index model to predict habitat suitability of forest species: the potential distribution of mountain pine (Pinus uncinata) in the Iberian peninsula

    Get PDF
    Characterization of the suitability or potentiality of a territory for forest tree species is an important source of information for forest planning and managing. In this study, we compared a relatively simple methodology to generate potential habitat distribution areas that has been traditionally used in Spain (the potential index model) with a statistical modelling approach (generalized linear model). We modelled the potential distribution of mountain pine (Pinus uncinata) in the Iberian peninsula as a working example. The potential index model generated a map of habitat suitability according to the values of an index of potentiality, whose distribution has usually divided into four categories based on quartiles (from optimum to low suitability). Considering all values of the index of potentiality as presences of mountain pine resulted in a low to moderate degree of agreement between the potential index model and the generalized linear model according to the kappa coefficient. Using the cut-off value of the index of potentiality that maximized the degree of agreement between both modelling approaches resulted in a substantial similarity between the maps of the predicted distribution of mountain pine. This cut-off value did lie in the upper-third quartile of the potential index distribution (high suitability category), and roughly coincided with the upper 30th percentile. The use of statistical techniques, which have proved to be powerful and versatile for species distribution modelling, is recommended. However, the potential index model, together with the adjustments proposed here, could be a reasonably simple methodology to predict the potential distribution of forest tree species that forest managers should take into account when evaluating forestation and afforestation projects

    Increasing trends of soil greenhouse gas fluxes in Japanese forests from 1980 to 2009

    Get PDF
    Forest soils are a source/sink of greenhouse gases, and have significant impacts on the budget of these terrestrial greenhouse gases. Here, we show climate-driven changes in soil GHG fluxes (CO2 emission, CH4 uptake, and N2O emission) in Japanese forests from 1980 to 2009, which were estimated using a regional soil GHG model that is data-oriented. Our study reveals that the soil GHG fluxes in Japanese forests have been increasing over the past 30 years at the rate of 0.31 Tg C yr−2 for CO2 (0.23 % yr−1, relative to the average from 1980 to 2009), 0.40 Gg C yr−2 for CH4 (0.44 % yr−1), and 0.0052 Gg N yr−2 for N2O (0.27 % yr−1). Our estimates also show large interannual variations in soil GHG fluxes. The increasing trends and large interannual variations in soil GHG fluxes seem to substantially affect Japan's Kyoto accounting and future GHG mitigation strategies

    Plant Responses to Extreme Climatic Events: A Field Test of Resilience Capacity at the Southern Range Edge

    Get PDF
    The expected and already observed increment in frequency of extreme climatic events may result in severe vegetation shifts. However, stabilizing mechanisms promoting community resilience can buffer the lasting impact of extreme events. The present work analyzes the resilience of a Mediterranean mountain ecosystem after an extreme drought in 2005, examining shoot-growth and needle-length resistance and resilience of dominant tree and shrub species (Pinus sylvestris vs Juniperus communis, and P. nigra vs J. oxycedrus) in two contrasting altitudinal ranges. Recorded high vegetative-resilience values indicate great tolerance to extreme droughts for the dominant species of pine-juniper woodlands. Observed tolerance could act as a stabilizing mechanism in rear range edges, such as the Mediterranean basin, where extreme events are predicted to be more detrimental and recurrent. However, resistance and resilience components vary across species, sites, and ontogenetic states: adult Pinus showed higher growth resistance than did adult Juniperus; saplings displayed higher recovery rates than did conspecific adults; and P. nigra saplings displayed higher resilience than did P. sylvestris saplings where the two species coexist. P. nigra and J. oxycedrus saplings at high and low elevations, respectively, were the most resilient at all the locations studied. Under recurrent extreme droughts, these species-specific differences in resistance and resilience could promote changes in vegetation structure and composition, even in areas with high tolerance to dry conditions.This study was supported by Ministerio de Ciencia e Innovación (Spanish Government) Projects CGL2008-04794 and CGL2011-29910 to R.Z., and by grant FPU-MEC (AP2005-1561) to A. H

    Ecosystem resilience despite large-scale altered hydroclimatic conditions

    Full text link
    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological model for many regions. Large-scale, warm droughts have recently occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security. Here we compare the functional response of above-ground net primary production to contrasting hydroclimatic periods in the late twentieth century (1975-1998), and drier, warmer conditions in the early twenty-first century (2000-2009) in the Northern and Southern Hemispheres. We find a common ecosystem water-use efficiency (WUE e: Above-ground net primary production/ evapotranspiration) across biomes ranging from grassland to forest that indicates an intrinsic system sensitivity to water availability across rainfall regimes, regardless of hydroclimatic conditions. We found higher WUE e in drier years that increased significantly with drought to a maximum WUE e across all biomes; and a minimum native state in wetter years that was common across hydroclimatic periods. This indicates biome-scale resilience to the interannual variability associated with the early twenty-first century drought - that is, the capacity to tolerate low, annual precipitation and to respond to subsequent periods of favourable water balance. These findings provide a conceptual model of ecosystem properties at the decadal scale applicable to the widespread altered hydroclimatic conditions that are predicted for later this century. Understanding the hydroclimatic threshold that will break down ecosystem resilience and alter maximum WUE e may allow us to predict land-surface consequences as large regions become more arid, starting with water-limited, low-productivity grasslands. © 2013 Macmillan Publishers Limited. All rights reserved

    Disentangling the complexity of groundwater dependent social-ecological systems

    Get PDF
    Groundwater resources are part of larger social-ecological systems. In this chapter, we review the various dimensions of these complex systems in order to uncover the diversity of elements at stake in the evolution of an aquifer and the loci for possible actions to control its dynamics. Two case studies illustrate how the state of an aquifer is embedded in a web of biophysical and sociopolitical processes. We propose here a holistic view through an IGM-scape that describes the various possible pathways of evolution for a groundwater related social-ecological system. Then we describe the elements of this IGM-scape starting with physical entities and processes, including relations with surface water and quality issues. Interactions with society bring an additional layer of considerations, including decisions on groundwater abstraction, land use changes and even energy related choices. Finally we point out the policy levers for groundwater management and their possible consequences for an aquifer, taking into account the complexity of pathways opened by these levers
    • …
    corecore