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Abstract

Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree
heights are used for estimating timber volume, site index and other important variables related to forest growth and
yield, succession and carbon budget models. However, the diameter at breast height (dbh) can be more accurately
obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d) models that predict tree
height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of
covariate effects we use shape constrained generalized additive models as an extension of existing h-d model
approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the
models and to enable predictions under projected changeable climatic conditions.

Methods: We develop unconstrained generalized additive models (GAM) and shape constrained generalized
additive models (SCAM) for investigating the possible effects of tree-specific parameters such as tree age, relative
diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature
during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany.

Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have
significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show
partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically
increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a
tree within a stand. The definition of constraints leads only to marginal or minor decline in the model statistics like AIC.
An observed structured spatial trend in tree height is modelled via 2-dimensional surface fitting.

Conclusions: We demonstrate that the SCAM approach allows optimal regression modelling flexibility similar to the
standard GAM but with the additional possibility of defining specific constraints for the model effects. The
longitudinal character of the model allows for tree height imputation for the current status of forests but also for
future tree height prediction.
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Background
Two of the main questions of forest management planning
concern the current status of forests and how forests will
develop in future. To estimate forest stock and assortment
from sample forest inventories, for example, in forest dis-
tricts or federal states, single tree volumes have to be
predicted and then summed up to get timber volume esti-
mates for a considered forest area. A tree volume estimate
is usually based on three parameters: tree species, tree
diameter and tree height. Since measuring tree diameter
at breast height (1.3 m) (dbh), is relatively cheap, but mea-
suring tree height is cost intensive, it is desirable to model
tree height as a function of tree species, tree diameter,
tree age and other possible stand- and site-specific param-
eters. An important feature of the height-diameter (h-d)
relationship is that it develops over time and varies from
stand to stand (Curtis 1967; Lappi 1997; Mehtätalo 2004).
In Mehtätalo (2005) it is noted that trees reach matu-
rity at different ages depending on site conditions. Hence,
asymptotic height and the height that is reached at any
particular age differ significantly among sites. The poorer
the site conditions are, the lower the tree height will be
for a certain age and dbh, with the dbh itself depending
on age, stand and site conditions, but also on silvicultural
treatments. Height of particular trees of a stand at prede-
fined ages of usually 50 or 100 years is used as a measure
for site quality and is denoted as ‘site index’.
In this paper we develop site-sensitive longitudinal h-

d models for forests in Lower Saxony, Germany, with the
main focus on modelling fixed effects via unconstrained
(GAM) and shape constrained generalized additive mod-
els (SCAM). Since climate change has already affected
forests in Central Europe and much heavier impact is
anticipated in the future, the models should be applica-
ble for prediction of future tree height development and
able to quantify the impact of climate change. Therefore,
to achieve the necessary higher causality we use a combi-
nation of causal and proxy site parameters as predictors.
Many studies of forest research have been devoted

to model the height-diameter relationship (see, e.g.,
Jayaraman and Lappi 2001; Eerikäinen 2003; Mehtätalo
2004; Sharma and Parton 2007; Schmidt et al. 2011). Sev-
eral approaches are now available for height predictions.
Those studies differ in the type of underlying princi-
pal h-d model used: linear (Lappi 1997; Eerikäinen 2003)
or non-linear (Huang et al. 1992; Calama and Montero
2004; Castedo-Dorado et al. 2006; Sharma and Parton
2007). The principal h-d models also vary on how the
model coefficients are being interpreted, which is espe-
cially important if they are then modelled as smooth func-
tions of predictors. The approaches differ also in terms
of the specification of the model effects. The effects are
either assumed to be strictly linear or allowed for non-
linear patterns for which spline techniques are commonly

applied (e.g., Schmidt et al. 2011). Finally, there are dif-
ferent procedures to account for spatial autocorrelation.
This can be modelled via dummy fixed effects or uncor-
related random effects on the level of territorial units
and stands (Jayaraman and Lappi 2001), Kriging methods
(Nanos et al. 2004), a Markov random field smoother
for estimating correlated random effects on the level
of territorial units, or 2-dimensional smooth terms of
the geographic location of the stands or sample plots
(Schmidt et al. 2011).
In this study a general underlying modelling approach

of a reparameterized version of the Korf-function, that
was developed by Lappi (1997) is used as the princi-
pal model. The reason for using this model is that the
model parameters considered there are less correlated
and have biological meaning. Moreover, a heuristic fix-
ation of the ‘non-linear’ parameters applied in this case
linearizes the model, which makes the generalized addi-
tive model approach reasonable to use for the estimation
of the covariate effects on the original parameters. The
model is then extended to include some tree-specific and
site-specific variables. As some of the covariate effects
are supposed to be monotone, a shape constrained addi-
tive modelling (SCAM) approach (Pya and Wood 2015) is
applied to account for influence of such variables as tree
age, relative diameter at breast height and altitude among
others, and also of site variables that will partially alter
with expected climate change.

Data
The data analyzed here are observations from 23 145 sam-
ple plots of 29 324 Norway spruce trees [Picea abies (L.)
Karst.] and some site-specific variables from the first cycle
of the state forest enterprise inventories (district sample
plot inventories) conducted by the Lower Saxony forest
planning agency. Norway spruce is the most common
and by far the most economically important species in
Europe. Lower Saxony is the second largest federal state of
Germany and is located in the north-western part. Every
year two or three state owned forest districts are invento-
ried. The data come from inventories in the time interval
1996 – 2008. There are almost no consecutive inventories
during this period (no longitudinal data), but all forest dis-
tricts are inventoried, with the exception of a small area of
the “Nationalpark Harz”.
Two types of covariates are considered: tree-specific and

stand- and site-specific. The tree-specific variables are
tree diameter at breast height (dbh), tree age (age) and
relative diameter at breast height (rel.dbh). The relative
diameter at breast height is calculated as

rel.dbh = dbh/mqd,

where mqd is the mean quadratic diameter of a sample
plot. The rel.dbh is a measure of the rank of a tree
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within all trees in a stand. A similar covariate is used by
Eerikäinen (2003) who used the tree’s dbh in relation to
the dbh of a stand’s dominant tree as predictor.
The second type of covariates, site-specific, can be

differentiated into causal and proxy site variables. The
proxy variables include altitude (alt), topex index
(topex.sw), and geographic location, easting (east)
and northing (north) in Gauß-Krüger coordinates refer-
ring to the 3rd meridian. The topex index describes
topographic exposure and terrain morphology in the
South-West direction. It is calculated as a sum of topo-
graphic exposure indices in the directions to the West,
South-West and South using a distance limit of 250meters
(see, e.g., Scott andMitchell 2005). A digital terrain model
(DTM) with a resolution of 90 meters by 90 meters was
used for topex calculation. A tree located on a summit
is highly exposed resulting in a negative topex index.
Positive topex indices belong to sites such as depressed
areas or valleys rectangular-orientated in the direction of
the topographic exposure. Topex indices of trees growing
along the flat areas would be near zero. Since exposure to
the South-West might result in drought stress, the topex
index is used as a proxy for drought stress.Moreover, extra
exposed sites will usually show a lower capacity of avail-
able soil water due to higher percentage of rocks and lower
depth to parent rock.
The additional causal site (climate) explanatory vari-

ables are temperature sum of daily mean temperature
during vegetation period (growing season) (temp.veg),
and De Martonne’s aridity index (ari). The aridity index
is a fraction of annual precipitation in millimetres over
mean annual temperature in degrees Centigrade plus ten
(P/(T+10)) (De Martonne 1926; Thornthwaite 1931). The
aridity index is calculated for the entire year, since the
precipitation during winter (non-growing season) could
be partially stored by the soil. Temp.veg and ari are
retrospective simulation means (Spekat et al. 2007) of
the normal climate period 1961–1990 that were regional-
ized from weather stations of the German weather service
(DWD) using GAM with model effects for the geographic
location and altitude. Table 1 summarizes the data under
study.

Methods
A difficulty with the h-d relationship is that it is not con-
stant but rather varies from stand to stand and develops
over time (Lappi 1997; Mehtätalo 2004). In this paper we
use an approach to modelling the longitudinal h-d rela-
tionship proposed by Schmidt (2010) that combines the
principal h-d-model of Lappi (1997) with (unconstrained)
generalized additive model technology as a starting point.
The development of the h-d model consists of three steps:
1) initial specification of the h-d relationship as a log-
linear mixed model with random stand effects, 2) ‘a priori’

Table 1 Characteristics of Norway spruce trees and site
parameters from the first cycle of all state forest enterprise
inventories in Lower Saxony. 29 324 Norway spruce trees from 23
145 sample plots were observed

Min 25% qu. Median 75% qu. Max

Tree height [m] 3.7 14.6 21.8 27 47.3

dbh [cm] 7 16.8 30.5 37.9 104

Tree age [years] 20 41 54 77 199

Altitude [m] 0 90 307 475.2 947

Sum of topographic exposure –84 560 –3108 1489 8135 89 208

indices [°× 1000]

(DTM 90 m × 90 m resolution)

Temperature sum during 833.6 1716.4 1996.6 2196.5 2456.8

the vegetation period [°C]

Aridity index 24.8 37 44.8 54.6 87.5

determination of non-linear model parameters, and 3)
developing unconstrained and shape constrained general-
ized additive models for investigating potential tree and
site specific effects on the original parameters of the
modified Korf function (Lappi 1997).
The initial steps, 1) and 2), of the model development

are briefly described in the following subsection.

Initial model development
A data base for the whole of Germany was applied for
this ‘a priori’ estimation of specific model parameters.
As a starting point, the following height-diameter model
known as the Korf function is used for the description of
the relationship between tree height and diameter (Lappi
1997):

log(μki) = Ak − Bk (dbhki + λ)−C , (1)

where μki = E(Hki) and Hki is a height of tree i on
sample plot k,dbhki is the diameter at breast height of
tree i on sample plot k;Hki follows a Gaussian distribu-
tion; Ak ,Bk , λ, and C are parameters of the model. The
preliminary modelling showed that Gaussian models with
the log link function performed better in terms of the
Akaike information criterion (AIC) than Gamma models.
Height-diameter curves differ for different plots and for
different points of time, however, the measurement occa-
sion effect was not included in the considered model. The
reason behind it was the lack of computer memory as
the whole data base contains several thousands of sample
plots with on average only very few height measurements
per measurement occasion. Therefore, the model param-
eters vary only over plots. Since parameters Ak and Bk are
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highly correlated, it is suggested to reparameterize dbh as
follows (Lappi 1997):

xki = (dbhki + λ)−C − (30 + λ)−C

(10 + λ)−C − (30 + λ)−C .

The model (1) can now be written as

log(μki) = Ak − Bkxki, (2)

where Ak and Bk are not highly correlated and have bio-
logical meanings.Ak is the expected value of the log height
of trees with dbh = 30 cm for sample plot k; and Bk is the
expected value of the difference in the log(Hki) between
trees of dbh = 30 cm and 10 cm for sample plot k.
These interpretations are important since the parameters
will be described as functions of additional tree, stand
and site-level covariates in the second step of the model
development.
Themodel (2) is linear with respect toAk and Bk . Taking

into consideration the random stand effect, these param-
eters can be represented at the first stage as Ak = A +
αk ,Bk = B + βk , where A and B represent fixed effects
which have to be estimated; αk and βk are random stand
level effects with zeromeans and constant variance. It may
be noted that (2) is overparameterized. Moreover, a model
of that specification cannot be linearized with respect to
the parameters λ and C. Therefore, it is suggested firstly
to estimate λ and C. These parameters were selected by
testing a variety of combinations of λ and C when fitting a
linear mixed model

log(μki) = A − Bxki + αk + βkxki,

The combination of the parameters with the lowest
error variance was λ = 7 and C = 1.225. There were no
clear trends found in λ and C over different mean stand
age and the models were not very sensitive to the value C.

Additive model for tree height
One of the model requirements is to predict actual and
future tree heights of a forest stand. Since every stand has
different characteristics, effects of site and stand variables
should be incorporated into the h-d model in combina-
tion with an age effect that describes the developmental
stage of the trees within a stand. Since the proportion of
structured and multi-aged stands in Lower-Saxony is con-
stantly increasing we use single tree age as a covariate. The
additional tree- and site-specific effects on the original
parameters A and B of the Korf function that are partially
sensitive to climate change, are assumed to be non-linear.
Then, based on the principal h-d model

log(μki) = A − Bxki, (3)

where the mean tree height can be modelled as a function
of tree age and additional tree and site parameters using
GAM (Hastie and Tibshirani 1990; Wood 2006a)

Model h1: unconstrained additive model

log(μki) = α0 + f1a(ageki) + f2a(rel.dbhki)
+ f3a(topex.swk) + f4a(temp.vegk)
+ f5a(arik) + f6a(eastk ,northk)
+ p0b × xki + p1b × ageki × xki + p2b
× altk × xki, (4)

where xki is the re-parameterized dbh of tree i on
sample plot k introduced at the initial step of the h-d
model development, α0 is the model intercept, p0b, p1b
and p2b are model coefficients. Hki is assumed to fol-
low a Gaussian distribution. The model terms f1a–f5a are
unknown smooth functions of the corresponding predic-
tor variables. We also added a spatial smooth function
f6a(east,north) of easting and northing, since there is
a spatial correlation in the residuals. This unconstrained
model assumes a linear combination of the covariate
effects and due to the log-link, the effects act multiplica-
tive exponentially on tree height.
In the above mentioned case the effects of age and alti-

tude on the slope B of the h-d curve were assumed to be
linear. Now, suppose that both predictors have non-linear
effects on B. Then the followingmodel may be considered:
Model h2: GAM with varying coefficients

log(μki) = α0 + f1a(ageki) + f2a(rel.dbhki)
+ f3a(topex.swk) + f4a(temp.vegk)
+ f5a(arik) + f6a(eastk ,northk)

+ p0b × xki + f1b(ageki) × xki + f2b(altk)

× xki, (5)

where the non-linear effects of age and altitude are rep-
resented by the smooth functions f1b(age) and f2b(alt).
Model h2 is referred to as a ‘variable coefficient model’
(Hastie and Tibshirani 1993; Wood 2006a).
The drawback of modelling with GAM is that it may

result in insufficiently smooth effects of the covariates.
Moreover, it is biologically plausible to expect that the
effects of such covariates as age, rel.dbh, topex.sw,
temp.veg and ari on the original parameter A will be
monotone under the current growth conditions of Lower
Saxony, which is not guaranteed for the GAM fit. There-
fore, we propose to impose additional constraints on the
univariate smooth terms by applying a SCAM approach
(Pya and Wood 2015) described in the next subsection.

Modelling non-linear effects using SCAM
The first shape constrained model (model h3) considered
is simply h1 as given in (4) with monotonicity restrictions
described below on univariate smooth components,
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Model h3: shape constrained additive model

log(μki) = α0 + m1a(ageki) + m2a(rel.dbhki)

+ m3a(topex.swk) + m4a(temp.vegk)

+ m5a(arik) + f6a(eastk ,northk)
+ p0b × xki + p1b × ageki × xki + p2b
× altk × xki. (6)

To distinguish from unconstrained smooths, smooth
terms under monotonicity constraints are denoted bymja.
The effect of age on the original parameter A in (3) is
supposed to be increasing, since for any constant vector
of model predictors, the level of the h-d curve, that is
the expected log(Hki) of a tree with dbh = 30 cm, is
assumed to be increasing with increasing age. The effect
of rel.dbh on the original parameter A is expected
to be monotone decreasing, since lower values of the
rel.dbh correspond to a lower rank of a tree within a
stand. Within the same stand a tree with a lower rank
has on average a greater competition pressure compared
to a tree with a higher rank. While struggling for the
light, suppressed trees have to invest more into height
than diameter growth. Hence, trees will be taller with
the value of rel.dbh decreasing given fixed values of
dbh, age and the additional covariates. Trees with high
values of rel.dbh are dominant trees that are usually
more exposed to the wind and consequently, they have
to invest more into diameter than height growth for sta-
bility reason. Therefore, given any fixed covariate vector
tree height is assumed to decrease with increasing val-
ues of rel.dbh. The effect of topex.sw on the original
parameter A should be monotone increasing, since an
exposure to the South West might result in drought stress
as it was explained previously. We assume a monotone
increasing netto assimilation with increasing temp.veg
under the climatic conditions of Lower Saxony (if not
limited by the deficit of other resources). The lower site
indices of Norway spruce, that are partially observed on
warmer sites of Lower Saxony, are, for instance, assumed
to result from limited water and lower nutrient supply.
The effect of temp.veg must not be confused with
optimum curves that are observed under varying tem-
perature values in experiments. Hence, no temperature
optimum is assumed to be present under the current cli-
matic conditions of Lower Saxony. The effect of ari on
the original parameter A is expected to increase with
increasing humidity. The lower site indices of Norway
spruce that are partially observed on very humid sites in
higher altitudes of the uplands, are assumed to be a result
of limited temperature sums. Hence, ari and temp.veg
are both assumed to have monotone increasing effects
on the original parameter A, hence on the level of the
h-d curve.

Next, we consider the shape constrained version of the
variable coefficient model h2 as model h4.
Model h4: SCAM with varying coefficients

log(μki) = α0 + m1a(ageki) + m2a(rel.dbhki)

+ m3a(topex.swk) + m4a(temp.vegk)

+ m5a(arik) + f6a(eastk ,northk)
+ p0b × xki + m1b(ageki) × xki + m2b(altk)

× xki, (7)

where the non-linear effects of age and alt on the slope
B are represented by the smooth functions m1b(age)

and m2b(alt). Increasing effects of both m1b(age) and
m2b(alt) on the h-d relationship are assumed in this
model. It is well known that the slope of the h-d rela-
tionship increases with the developmental stage of a stand
(e.g., Mehtätalo 2004). In our investigation age serves as
a covariate that describes the developmental stage of a
stand. Therefore, when fitting a varying coefficient model
for the age effect on B, it should be monotone increasing.
However, the gradient of the actual tree heights that are
predicted in applications is also affected by the dbh val-
ues that are used to initialize the model. The direction of
the monotonicity of effect m2b(alt) remains unspecified
at this point and will be defined later based on the results
of the unconstrained model variant. Moreover, for all the
monotonicity constraints a validation of the assumptions
will be conducted based on the corresponding uncon-
strained model effects.
When fitting model with monotonicity constraints on

the effects of temp.veg and of ari, we noticed some
possibly artificial sharp changes in the corresponding esti-
mated smooths (see sec. 4.2). To avoid these limitations
the shape constrained model is enhanced by concavity
constraints on the smooth terms of temp.veg and of
ari. We propose model h5 as a variable coefficient model
since the performance of model h4 was shown to be better
than of model h3 in terms of AIC and GCV scores.
Model h5: SCAM with concavity constraints

log(μki) = α0 + m1a(ageki) + m2a(rel.dbhki)

+ m3a(topex.swk) + mc4a(temp.vegk)
+ mc5a(arik) + f6a(eastk ,northk)

+ p0b × xki + m1b(ageki) × xki + m2b(altk)

× xki, (8)

where now mc4a, mc5a are subject to both monotone
increasing and concavity constraint.
The following basic initial model with only age effect on

the original parameters A and B was used as a reference
model which all the considered models were compared
with.
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Model h.ref:

log(μki) = α0 + f1a(ageki) + p0b × xki + p1b
×ageki × xki. (9)

Model estimation
To estimate the SCAM models (6), (7) and (8) we
employ the penalized regression spline approach which
can be split into two stages: representation of smooth
model terms via penalized unconstrained and constrained
regression splines along with specification of the smooth-
ness/wiggliness penalty followed by model coefficients
estimation by penalized log likelihood maximization
along with smoothness parameter selection by minimiza-
tion of a prediction error criterion such as AIC or GCV.
Shape COnstrained P-splines (SCOP-splines) (Pya and
Wood 2015) were used for representation of the shape
constrained smooth model terms. Since the bivariate
function f6a(east,north) is a function of geographic
coordinates, it was represented by a thin plate regression
spline (Wood 2006a).
Combining the model matrices of each smooth column-

wise into one model matrix and absorbing identifiabil-
ity constraints result in the following expression of the
SCAMmodel

log(μki) = Xkiβ , (10)

whereX is the combinedmodelmatrix of strictly paramet-
ric model components and smooth basis functions and
βis a vector of unknown coefficients. After setting the
penalties on each smoothmodel termwhich are expressed
as quadratic forms of the full coefficient vector, β , the
penalized log likelihood maximization can be written as

lp(β) = l(β) − βTSβ/2,

where l(β) is the log likelihood of the model, S =∑
k λkSk , and Sk are the smooth penalty matrices enlarged

by zeros to be expressed in terms of the full vector of
the model coefficients, λk are smoothing parameters. The
model coefficients, β , are estimated by lp(β) maximiza-
tion given the values of the vector of smoothing parame-
ters, λ. Optimization of the lp(β) is achieved by a Newton
method which shares several features with a penalized
iteratively re-weighted least squares scheme standard for
GLM estimation. The smoothing parameter vector λ is
estimated by minimizing the generalized cross validation
score (GCV),

Vg = nD(β̂)/(n − τ)2,

where D(β̂) = 2
{
lmax − l(β̂)

}
σ 2 is the model deviance,

lmax is the saturated log likelihood, β̂ is the vector of the
model parameters estimates, and τ is the effective degrees
of freedom.

Confidence intervals for the model smooth terms are
obtained through the distributional results for β̂ . The
Bayesian approach to interval estimates for the smoothing
spline models proposed by Wahba (1983) and Silverman
(1985) was extended to generalized additive models by Lin
and Zhang (1999) and Wood (2000). SCAM adopts this
approach with an addition for establishing the approxi-
mate distribution of the exponentiated β , denoted as β̃ ,
resulting in the normal distribution β̃|y ∼ N(

ˆ̃
β ,V

β̃
),

where the expression for the covariance matrix V
β̃

as
well as all tedious details of the model parameters estima-
tion can be found in Pya and Wood (2015). The SCAM
approach is implemented in an R package scam available
at http://CRAN.R-project.org/.
To fit the unconstrained models h1 and h2 we use the

penalized regression spline approach (Wood 2006a). The
univariate functions f2a–f5a of (4) and (5) and also the
unconstrained effects f1b and f2b of model h2 (5) are rep-
resented by P-splines (Eilers and Marx 1996) whereas
an isotropic two dimensional thin plate regression spline
(Wood 2006a) was used for representation of f6a. The
standard penalized iteratively re-weighted least squares
(PIRLS) scheme is applied for the model parameter esti-
mation. The multiple smoothing parameter is selected
by minimizing the GCV score in outer iterations. The
Newtonmethod is used for optimizing the GCV to update
the smoothing parameter. The interval estimates for the
component smooth functions of models h1 and h2 are
obtained using the Bayesian approach to uncertainty esti-
mation (Wahba 1983; Silverman 1985; Wood 2006b).

Results and discussion
Model selection
All covariates considered in the h-d models revealed their
relevance to the tree height modelling. In addition we esti-
mated possible submodels, where one at a time smooth
effects were dropped. Table 2 presents the model fitting
results (to keep the paper short, the results on the sub-
models are shown only for the models with one dropped
smooth effect). The adjusted r2 and GCV scores are
included into the table. The last column of the table shows
the percentage of improvement in the Akaike information
criterion (AIC.diff.perc) in comparison with the reference
model, h.ref, calculated as follows

AIC.diff.perc = AICh.ref − AIChj
AICh.ref

× 100,

where AICh.ref is the AIC of the reference model and
AIChj of the model under consideration. The best selected
model in terms of the AIC is the shape constrained vary-
ing coefficients model h4 with all initial smooth effects
included. The measures of the model performance of the
model h2 are only slightly worse than those of h4. Adding
the variable coefficients proposed in the GAM model h2

http://CRAN.R-project.org/
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Table 2 Comparison of statistics for different
height-diameter-models including a base model with only age
effects (h.ref), the unconstrained additive model (h1),
unconstrained additive model with varying coefficients (h2),
shape constrained additive model (h3), shape constrained
additive model with varying coefficients (h4), additive model with
concavity constraints (h5). For all models the result of dropping
single model effects on different model statistics are presented

Model adj r2 GCV AIC.diff.perc

h.ref .885 7.309 0

h1 .909 5.798 4.79

h1−f2a .907 5.883 4.49

h1−f3a .908 5.846 4.63

h1−f4a .908 5.842 4.64

h1−f5a .908 5.848 4.62

h1−f6a .900 6.324 2.99

h2 .909 5.784 4.85

h2−f2a .908 5.87 4.54

h2−f3a .908 5.832 4.68

h2−f4a .908 5.83 4.68

h2−f5a .908 5.837 4.66

h2−f6a .901 6.311 3.04

h2−f1b .907 5.916 4.38

h2−f2b .909 5.811 4.75

h3 .909 5.805 4.77

h3−m2a .907 5.887 4.48

h3−m3a .908 5.851 4.61

h3−m4a .901 6.290 3.11

h3−m5a .908 5.866 4.55

h3−f6a .901 6.316 3.02

h4 .909 5.778 4.87

h4−m2a .908 5.867 4.55

h4−m3a .909 5.812 4.75

h4−m4a .902 6.2582 3.21

h4−m5a .908 5.838 4.66

h4−f6a .899 6.382 2.81

h4−m1b .907 5.895 4.45

h4−m2b .907 5.914 4.39

h5 .907 5.877 4.52

h5−m2a .906 5.93 4.33

h5−m3a .907 5.865 4.56

h5−mc4a .901 6.302 3.07

h5−mc5a .907 5.860 4.58

h5−f6a .900 6.406 2.73

h5−m1b .906 5.96 4.22

h5−m2b .908 5.86 4.58

improves the unconstrainedmodel h1, although to a lesser
extent that it does in case of the SCAMs. Dropping either
of the effects from any of the five considered models
increases the AIC, with the exception of the three cases of
the model h5 where the AIC slightly decreases. The other
measures of the model performance such as the GCV
and adjusted r2 also give worse results than those of the
full models h1-h5, when dropping any single effects. The
spatial effect improves the model significantly: e.g., the
models without spatial effect result in much higher GCV
than the corresponding full model (about 24% difference
in the GCV in case of h2). Introducing stricter concavity
constraints in model h5 leads to a slight increase in AIC
and GCV, and correspondingly to a poorer model fit. It
should be noted that there are only marginal differences
in the performance criteria between the unconstrained
GAM models h1 and h2, and their constrained coun-
terparts, SCAM models h3-h5. The estimates and the
corresponding standard errors of the coefficients of the
linear part of the unconstrained model h1 and the shape
constrained version h3 are shown in Table 3.

Interpretation of unconstrained effects and validation of
their monotone counterparts
Overall, the monotonicity constraints on the univariate
smooth terms result in less wiggly pattern compared to
the unconstrained effects (see Fig. 2 versus Fig. 1). It
should be noticed that the estimated effects of the shape
constrained smooths are not centered as they are in the
case of the unconstrained GAM, as different identifiability
constraints were applied.
The estimated unconstrained effect of age on the origi-

nal parameter A of model h1 is increasing with a decreas-
ing gradient for almost the whole data range (Fig. 1a).
However, for high ages, above 150 years, the effect is
implausibly decreasing. This pattern probably occurred
due to an unbalanced data structure for the combination
of site index and age. It is typical for forests and espe-
cially managed forests that ‘old stands grow on poor sites’,
since trees need longer production periods to reach mer-
chantable timber dimensions. The proposed h-d models
cover some site factors, e.g. temp.veg. However, a cer-
tain proportion of the variability in site quality probably

Table 3 Estimates of the coefficients of the linear parts of models
h1 and h3. The corresponding standard errors are given in
brackets

Model h1 Model h3

Intercept 3.095(.0011) -1.907(.399)

p0b .5654(.0084) .606(.0072)

p1b .00354(1.42 × 10−4) .00276(1.1 × 10−4)

p2b 1.23 × 10−4(1.31 × 10−5) 1.22 × 10−4(1.32 × 10−5)



Pya and Schmidt Forest Ecosystems  (2016) 3:2 Page 8 of 14

Fig. 1 The estimated smooth terms of the unconstrained model without varying coefficients, h1. a the smooth function of age, (b) the smooth
function of relative diameter at breast height, (c) the smooth function of topex index, (d) the smooth function of temperature sum during the
vegetation period and (e) the smooth function of aridity index. The labels of the vertical axes for the univariate smooths denote the smooth model
components with the corresponding covariate and estimated degrees of freedom (edf) given in brackets

remains unquantified, which presumably leads to the
implausible decreasing effect for high ages. The effect of
age of model h3 is assumed to be monotone increasing,
so that at high ages the estimated smooth tends to a con-
stant guaranteeing a plausible pattern over the whole data
range (Fig. 2a).
The estimated unconstrained effect of rel.dbh of

model h1 (Fig. 1b) supports the imposition of a mono-
tone decreasing constraint on the function f2a(rel.dbh)

when constructing model h3. The confidence intervals
of f2a near both boundaries of the data range are very
wide which suggest that the minor deviates of the esti-
mated smooth from monotonicity are not significant.
The monotone effect of rel.dbh of model h3 is lin-
ear with a negative slope which fulfills the imposed
monotone decreasing constraint (Fig. 2b). The effect of
topex.sw on the original parameter A is not very
strong, which might be because the digital terrain model

used for the topex calculation has a low resolution of
90 m × 90 m (Fig. 1c). At the upper boundary of the
range of topex.sw the estimated smooth is considerably
decreasing, but has a wide confidence interval. Hence,
the assumption of a monotone increasing effect made in
model h3 need not to be rejected. Although there is an
increasing effect of topex.sw near the lower boundary
of the covariate range, this effect is much stronger (the
gradient of the function is very steep) in comparison with
the overall pattern. The corresponding confidence inter-
vals are wide which might be due to the small amount of
data available in that range. Therefore, the resulting lin-
earity of the constraint effect could be validated as feasible
also for this data range of topex.sw. (Fig. 2c).
The unconstrained effects of temp.veg and ari of

model h1 (Fig. 1d, e) are both increasing over almost
the whole data ranges except for the boundaries with
not many data available. The results of the temp.veg
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Fig. 2 The estimated shape constrained univariate smooths of model h3. a the smooth of age, (b) the smooth of relative diameter at breast height,
(c) the smooth of topex index, (d) the smooth of temperature sum during the vegetation period and (e) the smooth of aridity index. The labels of
the vertical axes denote the smooth terms with the corresponding covariate and edf given in brackets

effect are mainly in accordance with findings of Albert
and Schmidt (2009) who describe a monotone increasing
effect with declining rate of mean temperature in growing
season on site index for Norway spruce in Lower Saxony.
In contradiction, Nothdurft et al. (2012) found an opti-
mum curve with a slight tendency of a decreasing effect
for high values of temperature sum in growing season
for Norway spruce in Baden-Württemberg. This might
be a result of the warmer climate of Baden-Württemberg
which is located in Southwest Germany. However, an
investigation for the whole of Germany (Schmidt 2010)
showed monotone increasing effects of temperature sum
in growing season and aridity index. These partially dif-
fering results might be due to the collinearity of climatic
covariates which hinders the estimation of robust causal
effects especially for the upper boundaries of the data
ranges. From our point of view the scam approach offers
a possible solution to the problem by integrating expert
knowledge. Even if the modelling procedure includes
a more subjective component, we argue that predic-
tions from our scam models are more reliable than their
unconstrained counterparts, because of limited extreme

data values. However, future model building should use
extended data bases with a specific focus on warm-dry
site conditions. The corresponding constrained effect of
temp.veg of model h3 (Fig. 2d) is monotone increasing
with a weak effect below temp.veg = 1400, a stronger
effect above 1500 and with a slight tendency of a decreas-
ing gradient. The constrained effect of ari (Fig. 2e) is
approximately linear with a steep slope below the value
of ari around 70 and nearly constant above that value,
indicating almost no further impact of increasing humid-
ity. Compared to the other shape constrained effects
the constraint effects for temp.veg and ari might be
thought as still implausible to a certain extent. The weak
effect of temp.veg at its small values can be consid-
ered as implausible, since the marginal utility of a unit
increase of the temperature sum should be high especially
under the condition of low temperature. Furthermore,
the sharp change in the gradient of m4a(temp.veg)

at around 1400 seems to be artificial. The plateau part
of the estimated effect of ari (Fig. 2e) is observed at
very humid site conditions only which also could be
validated as implausible. Additionally, the sharp change
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Fig. 3Model h5: the estimated smooth terms with both monotonicity and concavity constraints: (a) the smooth of temperature sum during the
vegetation period and (b) the smooth of aridity index

in the gradient seems to be spurious. Figure 3 shows
the estimated effects of the two terms with both mono-
tone increasing and concavity constraints,mc4a andmc5a.
This figure reveals now more convincing and reasonable
smooth curves of the sum of daily mean temperature
during vegetation period and aridity index. The other
smooth terms of model h5 have similar effect to those of
model h3.
The estimated varying coefficients smooths of the

unconstrained h2 and shape constrained h4 models, are
illustrated in Figs. 4 and 5 correspondingly. From an
expert view the unconstrained non-linear structure of the
effects of age and altitude on the original parameter B is
too flexible (Fig. 4). The unconstrained effect of age sup-
ports the assumption of an increasing slope of the h-d
curve with increasing developmental stage, since gener-
ally the effect of age on B is increasing. Only for high ages
the effect is decreasing. The unconstrained effect of alti-
tude, f2b(alt), shows a weak increasing tendency, and the
overall amplitude of the effect is small in comparison with
the age effect. The corresponding confidence intervals are
very large.
However, the two plots of the constrained version

(Fig. 5) show the plausible monotone effects of age and
altitude, although the non-linear structure of m2b(alt)

is not very strong. Additional information about mono-
tonicity of the effects narrowed the confidence intervals.
The variability of the smooth estimates decreased as our
beliefs in the shape of the effects were appended to the h-d
relationship.
Figure 6 shows the spatial effect of the model h5. The

effect was similar for the other considered models. The
spatial smooth can be interpreted as a proxy of additional

predictors such as available water capacity of the soil,
nutrient supply of the soil, etc., which were not at our
disposal. The southern medium mountain area has better
soil condition, therefore the trees are taller and slender in
this part (light grey), compared to the worser conditions
in the flat lands (silver) which have mainly glacial (sandy)
type of soil. The conditions are even worse in terms of
height growth near the North Sea coast (dark grey) due to
the higher wind speed.

Conclusions
The presented framework and software allow the inclu-
sion of a combination of shape constrained and uncon-
strained smooth terms of one or more covariates as well
as inclusion of strictly parametric model components
and varying coefficient terms. The smoothing parameter
selection is integrated with the SCAM parameter estima-
tion procedure which is a great advantage. The model
estimation scheme also provides interval estimates of the
smooth terms which does not incur any additional simu-
lations.
The previous approach that was used as a starting

model (Schmidt 2010) used unconstrained GAM formod-
elling fixed effects on tree height development which
resulted in some non-monotonic effects that are scientif-
ically implausible. Based on the foregoing justification for
the monotonicity of such model components, it is claimed
that the observed non-monotonicity is a result of unmea-
sured and unknown covariates and insufficient observa-
tions and collinearity of covariates. Not only does this
limit the interpretability and usage of the scientific model,
but it also leads to underestimating the variation associ-
ated with prediction of tree height. The specification of
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Fig. 4 The estimated varying coefficients effects of the unconstrained model h2. Left panel: estimate of f1b(age); right panel: of f2b(alt). The labels
of the vertical axes denote the smooth terms with the corresponding covariate and edf given in brackets

appropriate monotonicity constraints allows for an opti-
mal combination of flexibility and expert knowledge to
guarantee for a more robust modelling. This is especially
useful in models using causal covariates applied to the
prediction of future forest status.
The properties of the finally selected model (h5) can be

summarized as follows:

1) The model comprises significant non-linear effects of
covariates.

2) The plausibility of non-linear effects of covariates is
enforced by the integration of monotonicity
constraints.

3) The plausibility of some non-linear effects of
covariates is enforced by the additional integration of
concavity constraints.

4) The implementation of expert knowledge via
constraints is enabled because the original parameters
of the principal h-d model have a biological meaning.

Fig. 5 The estimated shape constrained varying coefficients effects of model h4. Left panel: estimate ofm1b(age); right panel: ofm2b(alt). The
labels of the vertical axes denote the smooth terms with the corresponding covariate and edf given in brackets
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Fig. 6 An illustration of the non-linear effect of the spatial smooth
f6a(east,north) of model h5, all other covariates were set to their
mean values. The coordinates are Gauß-Krüger coordinates referring
to the 3rd Meridian. The black dots mark the locations of inventory
plots and give an impression of the state owned forest area. Light
grey indicates high values of log(E(Hki)), silver medium, and dark
grey small values

5) The present autocorrelation in the large scale data
base is covered by a 2-dimensional surface fitting as a
function of coordinates.

6) The causality and generality of the model for
prediction purposes is improved by use of causal site
variables like sum of daily mean temperature during
vegetation period and index of aridity.

None of the height-diameter-models referenced in the
introduction chapter cover all these aspects simultane-
ously. Most models assume linear effects of covariates
(e.g., Lappi 1997; Eerikäinen 2003; Calama and Montero
2004; Mehtätalo 2004). However, sometimes transforma-
tions of covariates are employed to achieve approximately
linear effects (Eerikäinen 2003). At least in our case
some of the estimated effects are significantly non-linear
which would lead to biased predictions if disregarded.
Moreover, there is a qualified need for constraining the
non-linear effects because particularly at the boundaries
of data ranges effect pattern resulted that conflict with
expert knowledge. Hofner et al. (2011) presented a struc-
tured additive regression model for ordered categori-
cal data of the breeding distribution of Red Kite that
employs monotonic penalized splines. As in our applica-
tion they emphasize the optimal combination of flexibil-
ity and expert knowledge that is enabled by use of the

monotone P-Splines. Schmidt et al. (2011) modelled non-
linear effects of covariates via penalized regression splines
but monotonicity resulted directly from the model fit
without specifying constraints. Moreover, since the orig-
inal parameters of their principal height-diameter model
(“Näslund function”, see e.g. Kangas and Maltamo 2002)
have no clear biological meaning, there would not be bio-
logical expert knowledge that could be included in the
model selection as in our case. Data from large scale for-
est inventories typically show spatial autocorrelation of
residuals that could not be related to fixed effects when
conducting regression analyses. In h-d-modelling often
a mixed model approach is used to assess between-plot
covariance structures (Jayaraman and Lappi 2001; Mehtä-
talo 2004). However, in this approach it is disregarded that
random effects of sample plots are usually not spatially
independent themselves, but show some similarity due to
effects of unobserved covariates like soil properties. As
a solution to the problem (Brezger and Lang 2006) sep-
arate the overall spatial trend into a spatially correlated
(structured) and an uncorrelated (unstructured) effect.
The latter one accounts for local correlation, in the case of
h-d modelling of trees of the same sample plot or stand.
Only the unstructured spatial effect should be modelled
by uncorrelated random effects. Structured spatial effects
can be modelled via a Gaussian Markov random field,
i.e. spatially correlated random effects are estimated for
discrete spatial units (Kammann and Wand 2003) or via
2-dimensional surface fitting by applying specific gener-
alized additive models based on e.g. penalized regression
splines with thin plate basis (Wahba 1990; Wood 2006a).
We use the latter approach since our observations are
exactly localized via coordinates. More simple approaches
for describing structured spatial effects in h-d-models
are dummy variables for territorial units (Huang et al.
2000; Jayaraman and Lappi 2001; Calama and Montero
2004) or univariate linear effects of coordinates (Hökkä
1997; Mehtätalo 2004). However, these approaches disre-
gard either the large scale autocorrelation between units
or would assume at least in our case unrealistically sim-
ple pattern of the structured spatial effect (Fig. 6). A
more detailed analysis is presented by Nanos et al. (2004),
who fitted ordinary mixed models but applied Kriging
methods to the estimated random effects to account for
spatial correlation. Hence, a structured spatial effect is
modeled but in a 2 step procedure. We did not model
random effects on plot level to account for local, hence
unstructured spatial effects because for most sample plots
only one height was measured (Table 1). Causal site vari-
ables have not been widely used as predictors in h-d
modelling. Many approaches use no site variables at all
or only proxy site variables like altitude or coordinates
Hökkä (1997). Huang et al. (2000) use ecoregions as a
proxy for large scale site conditions. Mehtätalo (2004)
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combined causal variables like a longtime mean cumula-
tive temperature sum and a soil type classification with
proxy site variables as we did. The advantage of proxy
site variables is that they are usually known (like coordi-
nates of stand centroids) or can be easily calculated with
high accuracy (like altitude from high resolution digital
terrain models). Causal site variables like continuous cli-
matic and soil variables are usually unknown for forest
stands or inventory plots and have to be predicted from
auxiliary models. Thus they include a prediction error
that will affect the height-diameter modelling also. How-
ever, our decision to use causal site variables is based on
the following reasons. 1) Our model should be able to
predict future tree heights under projected changeable
climatic conditions. 2) The integration of expert knowl-
edge via monotonicity constraints is much more evident
for causal covariates since proxy variables usually sub-
sume several causal variables with differing effects. 3)
The combination of causal covariates and monotonicity
constraint improves the generality of the model in
predictions.
The approach of SCOP-splines is an additional exten-

sion of the variety of smoothing techniques incorporated
in the R-library mgcv (Wood 2006a). For this specific
application of modelling the height-diameter relationship
of Norway spruce, we have shown that the implemen-
tation of shape constrained smooths ensures a robust
biologically meaningful interpretation with only marginal
loss of prediction accuracy and no increase in prediction
bias.
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