285 research outputs found

    Oxygenated versus non-oxygenated flush out and storage of donor livers:An experimental study

    Get PDF
    Background: During donor organ procurement and subsequent static cold storage (SCS), hepatic adenosine triphosphate (ATP) levels are progressively depleted, which contributes to ischemia-reperfusion injury (IRI). We sought to investigate a simple approach to prevent ATP depletion and IRI using a porcine donation after circulatory death (DCD) liver reperfusion model. Methods: After 30 min warm ischemia, porcine livers were flushed via the portal vein with cold (4 degrees C) non-oxygenated University of Wisconsin (UW) preservation solution (n = 6, control group) or with oxygenated UW (n = 6, OxyFlush group). Livers were then subjected to 4 h SCS in non-oxygenated (control) or oxygenated (OxyFlush) UW, followed by 4 h normothermic reperfusion using whole blood. Hepatic ATP levels were compared, and hepatobiliary function and injury were assessed. Results: At the end of SCS, ATP was higher in the OxyFlush group compared to controls (delta ATP of +0.26 vs. -0.68 mu mol/g protein, p = 0.04). All livers produced bile and metabolized lactate, and there were no differences between the groups. Grafts in the OxyFlush group had lower blood glucose levels after reperfusion (p = 0.04). Biliary pH, glucose and bicarbonate were not different between the groups. Injury markers including liver transaminases, lactate dehydrogenase, malondialdehyde, cell-free DNA and flavin mononucleotide in the SCS solution and during reperfusion were also similar. Histological assessment of the parenchyma and bile ducts did not reveal differences between the groups. Conclusion: Oxygenated flush out and storage of DCD porcine livers prevents ATP depletion during ischemia, but this does not seem sufficient to mitigate early signs of IRI

    Proteomic analysis of machine perfusion solution from brain dead donor kidneys reveals that elevated complement, cytoskeleton and lipid metabolism proteins are associated with 1-year outcome

    Get PDF
    Assessment of donor kidney quality is based on clinical scores or requires biopsies for histological assessment. Noninvasive strategies to identify and predict graft outcome at an early stage are, therefore, needed. We evaluated the perfusate of donation after brain death (DBD) kidneys during nonoxygenated hypothermic machine perfusion (HMP). In particular, we compared perfusate protein profiles of good outcome (GO) and suboptimal outcome (SO) 1-year post-transplantation. Samples taken 15 min after the start HMP (T1) and before the termination of HMP (T2) were analysed using quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS). Hierarchical clustering of the 100 most abundant proteins showed discrimination between grafts with a GO and SO at T1. Elevated levels of proteins involved in classical complement cascades at both T1 and T2 and a reduced abundance of lipid metabolism at T1 and of cytoskeletal proteins at T2 in GO versus SO was observed. ATP-citrate synthase and fatty acid-binding protein 5 (T1) and immunoglobulin heavy variable 2-26 and desmoplakin (T2) showed 91% and 86% predictive values, respectively, for transplant outcome. Taken together, DBD kidney HMP perfusate profiles can distinguish between outcome 1-year post-transplantation. Furthermore, it provides insights into mechanisms that could play a role in post-transplant outcomes.</p

    Integrative omics reveals subtle molecular perturbations following ischemic conditioning in a porcine kidney transplant model

    Get PDF
    BACKGROUND: Remote Ischemic Conditioning (RIC) has been proposed as a therapeutic intervention to circumvent the ischemia/reperfusion injury (IRI) that is inherent to organ transplantation. Using a porcine kidney transplant model, we aimed to decipher the subclinical molecular effects of a RIC regime, compared to non-RIC controls. METHODS: Kidney pairs (n = 8 + 8) were extracted from brain dead donor pigs and transplanted in juvenile recipient pigs following a period of cold ischemia. One of the two kidney recipients in each pair was subjected to RIC prior to kidney graft reperfusion, while the other served as non-RIC control. We designed an integrative Omics strategy combining transcriptomics, proteomics, and phosphoproteomics to deduce molecular signatures in kidney tissue that could be attributed to RIC. RESULTS: In kidney grafts taken out 10 h after transplantation we detected minimal molecular perturbations following RIC compared to non-RIC at the transcriptome level, which was mirrored at the proteome level. In particular, we noted that RIC resulted in suppression of tissue inflammatory profiles. Furthermore, an accumulation of muscle extracellular matrix assembly proteins in kidney tissues was detected at the protein level, which may be in response to muscle tissue damage and/or fibrosis. However, the majority of these protein changes did not reach significance (p < 0.05). CONCLUSIONS: Our data identifies subtle molecular phenotypes in porcine kidneys following RIC, and this knowledge could potentially aid optimization of remote ischemic conditioning protocols in renal transplantation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12014-022-09343-3

    Ex Situ Dual Hypothermic Oxygenated Machine Perfusion for Human Split Liver Transplantation

    Get PDF
    Liver splitting allows the opportunity to share a deceased graft between 2 recipients but remains underutilized. We hypothesized that liver splitting during continuous dual hypothermic oxygenated machine perfusion (DHOPE) is feasible, with shortened total cold ischemia times and improved logistics. Here, we describe a left lateral segment (LLS) and extended right lobe (ERL) liver split procedure during continuous DHOPE preservation with subsequent transplantation at 2 different centers. Methods: After transport using static cold storage, a 51-year-old brain death donor liver underwent end-ischemic DHOPE. During DHOPE, the donor liver was maintained 106 kPa. An ex situ ERL/LLS split was performed with continuing DHOPE throughout the procedure to avoid additional ischemia time. Results: Total cold ischemia times for the LLS and ERL were 205 minutes and 468 minutes, respectively. Both partial grafts were successfully transplanted at 2 different transplant centers. Peak aspartate aminotransferase and alanine aminotransferase were 172 IU/L and 107 IU/L for the LLS graft, and 839 IU/L and 502 IU/L for the ERL graft, respectively. The recipient of the LLS experienced an episode of acute cellular rejection. The ERL transplantation was complicated by severe acute pancreatitis with jejunum perforation requiring percutaneous drainage and acute cellular rejection. No device-related adverse events were observed. Conclusions: Liver splitting during continuous DHOPE preservation is feasible, has the potential to substantially shorten cold ischemia time and may optimize transplant logistics. Therefore liver splitting with DHOPE can potentially improve utilization of split liver transplantation

    Prolonged hypothermic machine perfusion enables daytime liver transplantation - an IDEAL stage 2 prospective clinical trial

    Get PDF
    Background: Liver transplantation is traditionally performed around the clock to minimize organ ischemic time. However, the prospect of prolonging preservation times holds the potential to streamline logistics and transform liver transplantation into a semi-elective procedure, reducing the need for nighttime surgeries. Dual hypothermic oxygenated machine perfusion (DHOPE) of donor livers for 1–2 h mitigates ischemia-reperfusion injury and improves transplant outcomes. Preclinical studies have shown that DHOPE can safely extend the preservation of donor livers for up to 24 h. Methods: We conducted an IDEAL stage 2 prospective clinical trial comparing prolonged (≥4 h) DHOPE to conventional (1–2 h) DHOPE for brain-dead donor livers, enabling transplantation the following morning. Liver allocation to each group was based on donor hepatectomy end times. The primary safety endpoint was a composite of all serious adverse events (SAE) within 30 days after transplantation. The primary feasibility endpoint was defined as the number of patients assigned and successfully receiving a prolonged DHOPE-perfused liver graft. Trial registration at: WHO International Clinical Trial Registry Platform, number NL8740. Findings: Between November 1, 2020 and July 16, 2022, 24 patients were enrolled. The median preservation time was 14.5 h (interquartile range [IQR], 13.9–15.5) for the prolonged group (n = 12) and 7.9 h (IQR, 7.6–8.6) for the control group (n = 12; p = 0.01). In each group, three patients (25%; 95% CI 3.9–46%, p = 1) experienced a SAE. Markers of ischemia-reperfusion injury and oxidative stress in both perfusate and recipients were consistently low and showed no notable discrepancies between the two groups. All patients assigned to either the prolonged group or control group successfully received a liver graft perfused with either prolonged DHOPE or control DHOPE, respectively. Interpretation: This first-in-human clinical trial demonstrates the safety and feasibility of DHOPE in prolonging the preservation time of donor livers to enable daytime transplantation. The ability to extend the preservation window to up to 20 h using hypothermic oxygenated machine preservation at a 10 °C temperature has the potential to reshape the landscape of liver transplantation. Funding: University Medical Center Groningen, the Netherlands.</p

    Restoration of Bile Duct Injury of Donor Livers During Ex Situ Normothermic Machine Perfusion

    Get PDF
    BACKGROUND: End-ischemic ex situ normothermic machine perfusion (NMP) enables assessment of donor livers prior to transplantation. The objective of this study was to provide support for bile composition as a marker of biliary viability and to investigate whether bile ducts of high-risk human donor livers already undergo repair during NMP.METHODS: Forty-two livers that were initially declined for transplantation were included in our NMP clinical trial. After NMP, livers were either secondary declined (n = 17) or accepted for transplantation (n = 25) based on the chemical composition of bile and perfusate samples. Bile duct biopsies were taken before and after NMP and assessed using an established histological injury severity scoring system and a comprehensive immunohistochemical assessment focusing on peribiliary glands (PBGs), vascular damage, and regeneration.RESULTS: Bile ducts of livers that were transplanted after viability testing during NMP showed better preservation of PBGs, (micro)vasculature, and increased cholangiocyte proliferation, compared with declined livers. Biliary bicarbonate, glucose, and pH were confirmed as accurate biomarkers of bile duct vitality. In addition, we found evidence of PBG-based progenitor cell differentiation toward mature cholangiocytes during NMP.CONCLUSIONS: Favorable bile chemistry during NMP correlates well with better-preserved biliary microvasculature and PBGs, with a preserved capacity for biliary regeneration. During NMP, biliary tree progenitor cells start to differentiate toward mature cholangiocytes, facilitating restoration of the ischemically damaged surface epithelium.</p

    Melting of hybrid organic-inorganic perovskites.

    Get PDF
    Several organic-inorganic hybrid materials from the metal-organic framework (MOF) family have been shown to form stable liquids at high temperatures. Quenching then results in the formation of melt-quenched MOF glasses that retain the three-dimensional coordination bonding of the crystalline phase. These hybrid glasses have intriguing properties and could find practical applications, yet the melt-quench phenomenon has so far remained limited to a few MOF structures. Here we turn to hybrid organic-inorganic perovskites-which occupy a prominent position within materials chemistry owing to their functional properties such as ion transport, photoconductivity, ferroelectricity and multiferroicity-and show that a series of dicyanamide-based hybrid organic-inorganic perovskites undergo melting. Our combined experimental-computational approach demonstrates that, on quenching, they form glasses that largely retain their solid-state inorganic-organic connectivity. The resulting materials show very low thermal conductivities (~0.2 W m-1 K-1), moderate electrical conductivities (10-3-10-5 S m-1) and polymer-like thermomechanical properties

    Biodiversity, Species Protection, and Animal Welfare Under International Law

    Get PDF
    The chapter explores the influence of the concept of animal welfare on international biodiversity law. A close examination of the recent evolution of this branch of international law shows that animal welfare has an ambivalent place in biodiversity-related agreements. Indeed, while welfare is only a faint consideration in the development of international regimes dealing with biodiversity as a whole, the concept has become an essential element for agreements dealing with the conservation of specific endangered species. Despite its role in these agreements, the place of animal welfare in international biodiversity law highlights that this corpus of rules is currently insufficient to be an effective tool for the protection of wildlife welfare. The last section of this study suggests that the adoption of international rules aiming at ensuring the protection of wild animals’ welfare could serve the double purpose of strengthening the conservation purpose of biodiversity regimes while also filling the welfare gap of international biodiversity law

    Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC

    Full text link
    Precision studies of the production of a high-transverse momentum lepton in association with missing energy at hadron colliders require that electroweak and QCD higher-order contributions are simultaneously taken into account in theoretical predictions and data analysis. Here we present a detailed phenomenological study of the impact of electroweak and strong contributions, as well as of their combination, to all the observables relevant for the various facets of the p\smartpap \to {\rm lepton} + X physics programme at hadron colliders, including luminosity monitoring and Parton Distribution Functions constraint, WW precision physics and search for new physics signals. We provide a theoretical recipe to carefully combine electroweak and strong corrections, that are mandatory in view of the challenging experimental accuracy already reached at the Fermilab Tevatron and aimed at the CERN LHC, and discuss the uncertainty inherent the combination. We conclude that the theoretical accuracy of our calculation can be conservatively estimated to be about 2% for standard event selections at the Tevatron and the LHC, and about 5% in the very high WW transverse mass/lepton transverse momentum tails. We also provide arguments for a more aggressive error estimate (about 1% and 3%, respectively) and conclude that in order to attain a one per cent accuracy: 1) exact mixed O(ααs){\cal O}(\alpha \alpha_s) corrections should be computed in addition to the already available NNLO QCD contributions and two-loop electroweak Sudakov logarithms; 2) QCD and electroweak corrections should be coherently included into a single event generator.Comment: One reference added. Final version to appear in JHE
    • …
    corecore