5 research outputs found

    Respiratory syncytial virus, human metapneumovirus, and influenza virus infection in Bangkok, 2016-2017

    Get PDF
    Children and adults residing in densely populated urban centers around the world are at risk of seasonal influenza-like illness caused by respiratory viruses such as influenza virus, human metapneumovirus (hMPV), and respiratory syncytial virus (RSV). In a large metropolitan of Thailand’s capital city Bangkok, most respiratory infections are rarely confirmed by molecular diagnostics. We therefore examined the frequency of RSV, hMPV, and influenza virus in 8,842 patients who presented influenza-like illness and sought medical care at a large hospital in Bangkok between 2016 and 2017. Using a multiplex real-time reverse-transcription polymerase chain reaction (RT-PCR), 30.5% (2,699/8,842) of nasopharyngeal (NP) swab samples tested positive for one or more of these viruses. Influenza virus comprised 17.3% (1,528/8,842), of which the majority were influenza A/H3N2. Such infection was most prevalent among adults and the elderly. RSV was identified in 11.4% (1,011/8,842) and were mostly ON1 and BA9 genotypes. Of the hMPV-positive samples (3.6%, 318/8,842), genotypes A2, B1, and B2 were detected. A small number of individuals experienced co-infections (1.8%, 155/8,842), most commonly between RSV and influenza A/H3N2. RSV and hMPV co-infections were also found, but mainly in young children. Viral respiratory tract infection peaked locally in the rainy season (June to September). These findings support the utility of rapid nucleic acid testing of RSV, hMPV, and influenza virus in patients with ILI

    Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis

    Get PDF
    Background: Influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus are the most common viruses associated with acute lower respiratory infections in young children (<5 years) and older people (≥65 years). A global report of the monthly activity of these viruses is needed to inform public health strategies and programmes for their control. Methods: In this systematic analysis, we compiled data from a systematic literature review of studies published between Jan 1, 2000, and Dec 31, 2017; online datasets; and unpublished research data. Studies were eligible for inclusion if they reported laboratory-confirmed incidence data of human infection of influenza virus, respiratory syncytial virus, parainfluenza virus, or metapneumovirus, or a combination of these, for at least 12 consecutive months (or 52 weeks equivalent); stable testing practice throughout all years reported; virus results among residents in well-defined geographical locations; and aggregated virus results at least on a monthly basis. Data were extracted through a three-stage process, from which we calculated monthly annual average percentage (AAP) as the relative strength of virus activity. We defined duration of epidemics as the minimum number of months to account for 75% of annual positive samples, with each component month defined as an epidemic month. Furthermore, we modelled monthly AAP of influenza virus and respiratory syncytial virus using site-specific temperature and relative humidity for the prediction of local average epidemic months. We also predicted global epidemic months of influenza virus and respiratory syncytial virus on a 5° by 5° grid. The systematic review in this study is registered with PROSPERO, number CRD42018091628. Findings: We initally identified 37 335 eligible studies. Of 21 065 studies remaining after exclusion of duplicates, 1081 full-text articles were assessed for eligibility, of which 185 were identified as eligible. We included 246 sites for influenza virus, 183 sites for respiratory syncytial virus, 83 sites for parainfluenza virus, and 65 sites for metapneumovirus. Influenza virus had clear seasonal epidemics in winter months in most temperate sites but timing of epidemics was more variable and less seasonal with decreasing distance from the equator. Unlike influenza virus, respiratory syncytial virus had clear seasonal epidemics in both temperate and tropical regions, starting in late summer months in the tropics of each hemisphere, reaching most temperate sites in winter months. In most temperate sites, influenza virus epidemics occurred later than respiratory syncytial virus (by 0·3 months [95% CI −0·3 to 0·9]) while no clear temporal order was observed in the tropics. Parainfluenza virus epidemics were found mostly in spring and early summer months in each hemisphere. Metapneumovirus epidemics occurred in late winter and spring in most temperate sites but the timing of epidemics was more diverse in the tropics. Influenza virus epidemics had shorter duration (3·8 months [3·6 to 4·0]) in temperate sites and longer duration (5·2 months [4·9 to 5·5]) in the tropics. Duration of epidemics was similar across all sites for respiratory syncytial virus (4·6 months [4·3 to 4·8]), as it was for metapneumovirus (4·8 months [4·4 to 5·1]). By comparison, parainfluenza virus had longer duration of epidemics (6·3 months [6·0 to 6·7]). Our model had good predictability in the average epidemic months of influenza virus in temperate regions and respiratory syncytial virus in both temperate and tropical regions. Through leave-one-out cross validation, the overall prediction error in the onset of epidemics was within 1 month (influenza virus −0·2 months [−0·6 to 0·1]; respiratory syncytial virus 0·1 months [−0·2 to 0·4]). Interpretation: This study is the first to provide global representations of month-by-month activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus. Our model is helpful in predicting the local onset month of influenza virus and respiratory syncytial virus epidemics. The seasonality information has important implications for health services planning, the timing of respiratory syncytial virus passive prophylaxis, and the strategy of influenza virus and future respiratory syncytial virus vaccination. Funding: European Union Innovative Medicines Initiative Respiratory Syncytial Virus Consortium in Europe (RESCEU)

    Respiratory syncytial virus genotypes NA1, ON1, and BA9 are prevalent in Thailand, 2012–2015

    No full text
    Respiratory syncytial virus (RSV) causes acute lower respiratory tract infection in infants and young children worldwide. To investigate the RSV burden in Thailand over four consecutive years (January 2012 to December 2015), we screened 3,306 samples obtained from children ≤5 years old with acute respiratory tract infection using semi-nested reverse-transcription polymerase chain reaction (RT-PCR). In all, 8.4% (277/3,306) of the specimens tested positive for RSV, most of which appeared in the rainy months of July to November. We then genotyped RSV by sequencing the G glycoprotein gene and performed phylogenetic analysis to determine the RSV antigenic subgroup. The majority (57.4%, 159/277) of the RSV belonged to subgroup A (RSV-A), of which NA1 genotype was the most common in 2012 while ON1 genotype became prevalent the following year. Among samples tested positive for RSV-B subgroup B (RSV-B) (42.6%, 118/277), most were genotype BA9 (92.6%, 87/94) with some BA10 and BA-C. Predicted amino acid sequence from the partial G region showed highly conserved N-linked glycosylation site at residue N237 among all RSV-A ON1 strains (68/68), and at residues N296 (86/87) and N310 (87/87) among RSV-B BA9 strains. Positive selection of key residues combined with notable sequence variations on the G gene contributed to the continued circulation of this rapidly evolving virus

    High seroprevalence of antibodies against human respiratory syncytial virus and evidence of respiratory syncytial virus reinfection in young children in Thailand

    No full text
    Objectives: To investigate the seroprevalence of respiratory syncytial virus (RSV) infections in young children, the correlation between RSV antibody levels in maternal and cord serum, and to provide evidence of RSV reinfection in Thai children after primary infections. Methods: Serum samples were collected from 302 mothers and 291 children between 2015 and 2021. Maternal and cord blood were collected at birth. Serial serum samples of children were collected at the ages of 2, 7, 18, 19, 24, 36, 48, and 60 months and the presence of anti-RSV immunoglobulin G (IgG) was tested using an enzyme-linked immunosorbent assay. Results: The cord: maternal serum antibody ratio was 1.09 (95% confidence interval 1.08-1.11). Although >90% of babies at birth were seropositive through transplacental transfer, antibody levels gradually declined, with the highest seronegative rate (91.9%) at 7 months of age. Subsequently, anti-RSV IgG levels increased with age, most likely due to natural infection. One-third of the children showed evidence of reinfection as determined by seroconversion of anti-RSV IgG or increased titers of at least 50 relative units/ml. Conclusion: Waning of RSV antibodies in infants is rapid, and RSV infection subsequently increases anti-RSV IgG titers. RSV vaccination in children before the age of 7 months should be recommended

    Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis

    No full text
    corecore