4,270 research outputs found

    Generational research: between historical and sociological imaginations

    Get PDF
    This paper reflects on Julia Brannen’s contribution to the development of theory and methods for intergenerational research. The discussion is contextualised within a contemporary ‘turn to time’ within sociology, involving tensions and synergies between sociological and historical imagination. These questions are informed by a juxtaposition of Brannen’s four-generation study of family change and social historian Angela Davis’s exploration women and the family in England between 1945 and 2000. These two studies give rise to complementary findings, yet have distinctive orientations towards the status and treatment of sources, the role of geography in research design and limits of generalisatio

    What Contribution Did Economic Evidence Make to the Adoption of Universal Newborn Hearing Screening Policies in the United States?

    Get PDF
    Universal newborn hearing screening (UNHS), when accompanied by timely access to intervention services, can improve language outcomes for children born deaf or hard of hearing (D/HH) and result in economic benefits to society. Early Hearing Detection and Intervention (EHDI) programs promote UNHS and using information systems support access to follow-up diagnostic and early intervention services so that infants can be screened no later than 1 month of age, with those who do not pass their screen receiving diagnostic evaluation no later than 3 months of age, and those with diagnosed hearing loss receiving intervention services no later than 6 months of age. In this paper, we first document the rapid roll-out of UNHS/EHDI policies and programs at the national and state/territorial levels in the United States between 1997 and 2005. We then review cost analyses and economic arguments that were made in advancing those policies in the United States. Finally, we examine evidence on language and educational outcomes that pertain to the economic benefits of UNHS/EHDI. In conclusion, although formal cost-effectiveness analyses do not appear to have played a decisive role, informal economic assessments of costs and benefits appear to have contributed to the adoption of UNHS policies in the United States

    The phase diagrams of KCaF3 and NaMgF3 by ab initio simulations

    Get PDF
    ABF3 compounds have been found to make valuable low-pressure analogues for high-pressure silicate phases that are present in the Earth’s deep interior and that may also occur in the interiors of exoplanets. The phase diagrams of two of these materials, KCaF3 and NaMgF3, have been investigated in detail by static ab initio computer simulations based on density functional theory. Six ABF3 polymorphs were considered, as follows: the orthorhombic perovskite structure (GdFeO3-type; space group Pbnm); the orthorhombic CaIrO3 structure (Cmcm; commonly referred to as the “post-perovskite” structure); the orthorhombic Sb2S3 and La2S3 structures (both Pmcn); the hexagonal structure previously suggested in computer simulations of NaMgF3 (P63/mmc); the monoclinic structure found to be intermediate between the perovskite and CaIrO3 structures in CaRhO3 (P21/m). Volumetric and axial equations of state of all phases considered are presented. For KCaF3, as expected, the perovskite phase is shown to be the most thermodynamically stable at atmospheric pressure. With increasing pressure, the relative stability of the KCaF3 phases then follows the sequence: perovskite → La2S3 structure → Sb2S3 structure → P63/mmc structure; the CaIrO3 structure is never the most stable form. Above about 2.6 GPa, however, none of the KCaF3 polymorphs are stable with respect to dissociation into KF and CaF2. The possibility that high-pressure KCaF3 polymorphs might exist metastably at 300 K, or might be stabilised by chemical substitution so as to occur within the standard operating range of a multi-anvil press, is briefly discussed. For NaMgF3, the transitions to the high-pressure phases occur at pressures outside the normal range of a multi-anvil press. Two different sequences of transitions had previously been suggested from computer simulations. With increasing pressure, we find that the relative stability of the NaMgF3 phases follows the sequence: perovskite → CaIrO3 structure → Sb2S3 structure → P63/mmc structure. However, only the perovskite and CaIrO3 structures are stable with respect to dissociation into NaF and MgF2

    Callers’ attitudes and experiences of UK breastfeeding helpline support

    Get PDF
    Background: Breastfeeding peer support, is considered to be a key intervention for increasing breastfeeding duration rates. Whilst a number of national organisations provide telephone based breastfeeding peer support, to date there have been no published evaluations into callers’ experiences and attitudes of this support. In this study we report on the descriptive and qualitative insights provided by 908 callers as part of an evaluation of UK-based breastfeeding helpline(s). Methods: A structured telephone interview, incorporating Likert scale responses and open-ended questions was undertaken with 908 callers over May to August, 2011 to explore callers’ experiences of the help and support received via the breastfeeding helpline(s). Results: Overall satisfaction with the helpline was high, with the vast majority of callers’ recalling positive experiences of the help and support received. Thematic analysis was undertaken on all qualitative and descriptive data recorded during the evaluation, contextualised within the main areas addressed within the interview schedule in terms of ‘contact with the helplines’; ‘experiences of the helpline service’, ‘perceived effectiveness of support provision’ and ‘impact on caller wellbeing’. Conclusion: Callers valued the opportunity for accessible, targeted, non-judgmental and convenient support. Whilst the telephone support did not necessarily influence women’s breastfeeding decisions, the support they received left them feeling reassured, confident and more determined to continue breastfeeding. We recommend extending the helpline service to ensure support can be accessed when needed, and ongoing training and support for volunteers. Further advertising and promotion of the service within wider demographic groups is warranted

    Taxonomy Based on Science is Necessary for Global Conservation

    Get PDF
    Taxonomy is a scientific discipline that has provided the universal naming and classification system of biodiversity for centuries and continues effectively to accommodate new knowledge. A recent publication by Garnett and Christidis (Garnett ST, Christidis L. Taxonomy anarchy hampers conservation. Nature. 2017; 546(7656):25±27. https://doi.org/10.1038/546025a) expressed concerns regarding the difficulty that taxonomic changes represent for conservation efforts and proposed the establishment of a system to govern taxonomic changes. Their proposal to restrict the freedom of taxonomic action through governing subcommittees that would review taxonomic papers for compliance and their assertion that the scientific community\u27s failure to govern taxonomy threatens the effectiveness of global efforts to halt biodiversity loss, damages the credibility of science, and is expensive to society are flawed in many respects. They also assert that the lack of governance of taxonomy damages conservation efforts, harms the credibility of science, and is costly to society. Despite its fairly recent release, Garnett and Christidis\u27 proposition has already been rejected by a number of colleagues. Herein, we contribute to the conversation between taxonomists and conservation biologists aiming to clarify some misunderstandings and issues in the proposition by Garnett and Christidis. Placing governance over the science of taxonomy blurs the distinction between taxonomy and nomenclature. Garnett and Christidis’s proposal is far-reaching but represents a narrow perspective of taxonomy, as utilized by conservation, and reflects an increasingly broad misunderstanding throughout biology of the scientific basis of taxonomy, formalized nomenclature, and the relationship between them. This trend may have resulted from the attenuation of instruction in taxonomic principles and, in particular, nomenclature at many universities, in part because of a shift in research priorities away from taxonomy. Garnett and Christidis assert that an “assumption that species are fixed entities underpins every international agreement on biodiversity conservation.” This assumption demonstrates a fundamental misunderstanding of taxonomy and the evolving view of what species represent. The essential features of science include documenting natural patterns and processes, developing and testing hypotheses, and refining existing ideas and descriptions of nature based on new data and insights. Taxonomy, the science of recognizing and delimiting species, adheres to these fundamental principles. Discoveries of new organisms together with advances in methodology continue unabated, leading to a constant reevaluation of the boundaries between taxonomic entities. Species (and higher taxa) comprise related organisms that may be clustered together differently depending on which sets of criteria are emphasized. Hey et al. acknowledge “the inherent ambiguity of species in nature” but point out that “species-related research and conservation efforts can proceed without suffering from, and without fear of, the ambiguity of species.” Through taxonomic research, our understanding of biodiversity and classifications of living organisms will continue to progress. Any system that restricts such progress runs counter to basic scientific principles, which rely on peer review and subsequent acceptance or rejection by the community, rather than third-party regulation. Thiele and Yeates cautioned that such a system “could lead to authoritarianism and a stifling of innovative taxonomic viewpoints. No other hypothesis-driven field of science would accept such a straitjacket”. Taxonomy and associated nomenclature are not without problems. Even with a common set of facts, alternative interpretations of how to classify organisms can lead to differing classifications. However, the science of taxonomy is increasingly rigorous, which can improve the foundation for targeted legislative action regarding species. Taxonomic instability does not affect all taxonomic groups equally. Garnett and Christidis provide examples from mammals and birds, which collectively represent a small fraction

    Taxonomy Based on Science Is Necessary for Global Conservation [Formal comment]

    Get PDF
    Taxonomy is a scientific discipline that has provided the universal naming and classification system of biodiversity for centuries and continues effectively to accommodate new knowledge. A recent publication by Garnett and Christidis expressed concerns regarding the difficulty that taxonomic changes represent for conservation efforts and proposed the establishment of a system to govern taxonomic changes. Their proposal to “restrict the freedom of taxonomic action” through governing subcommittees that would “review taxonomic papers for compliance” and their assertion that “the scientific community\u27s failure to govern taxonomy threatens the effectiveness of global efforts to halt biodiversity loss, damages the credibility of science, and is expensive to society” are flawed in many respects. They also assert that the lack of governance of taxonomy damages conservation efforts, harms the credibility of science, and is costly to society. Despite its fairly recent release, Garnett and Christidis\u27 proposition has already been rejected by a number of colleagues. Herein, we contribute to the conversation between taxonomists and conservation biologists aiming to clarify some misunderstandings and issues in the proposition by Garnett and Christidis. Placing governance over the science of taxonomy blurs the distinction between taxonomy and nomenclature. Garnett and Christidis\u27s proposal is far-reaching but represents a narrow perspective of taxonomy, as utilized by conservation, and reflects an increasingly broad misunderstanding throughout biology of the scientific basis of taxonomy, formalized nomenclature, and the relationship between them. This trend may have resulted from the attenuation of instruction in taxonomic principles and, in particular, nomenclature at many universities, in part because of a shift in research priorities away from taxonomy

    Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors

    Get PDF
    The Notch protein is one of the most mechanistically direct transmembrane receptors—the intracellular domain contains a transcriptional regulator that is released from the membrane when engagement of the cognate extracellular ligand induces intramembrane proteolysis. We find that chimeric forms of Notch, in which both the extracellular sensor module and the intracellular transcriptional module are replaced with heterologous protein domains, can serve as a general platform for generating novel cell-cell contact signaling pathways. Synthetic Notch (synNotch) pathways can drive user-defined functional responses in diverse mammalian cell types. Because individual synNotch pathways do not share common signaling intermediates, the pathways are functionally orthogonal. Thus, multiple synNotch receptors can be used in the same cell to achieve combinatorial integration of environmental cues, including Boolean response programs, multi-cellular signaling cascades, and self-organized cellular patterns. SynNotch receptors provide extraordinary flexibility in engineering cells with customized sensing/response behaviors to user-specified extracellular cues
    corecore