1,200 research outputs found
RUNX1 regulates a transcription program that affects the dynamics of cell cycle entry of naive resting B cells
RUNX1 is a transcription factor that plays key roles in hematopoietic development and in hematopoiesis and lymphopoiesis. In this article, we report that RUNX1 regulates a gene expression program in naive mouse B cells that affects the dynamics of cell cycle entry in response to stimulation of the BCR. Conditional knockout of Runx1 in mouse resting B cells resulted in accelerated entry into S-phase after BCR engagement. Our results indicate that Runx1 regulates the cyclin D2 (Ccnd2) gene, the immediate early genes Fosl2, Atf3, and Egr2, and the Notch pathway gene Rbpj in mouse B cells, reducing the rate at which transcription of these genes increases after BCR stimulation. RUNX1 interacts with the chromatin remodeler SNF-2-related CREB-binding protein activator protein (SRCAP), recruiting it to promoter and enhancer regions of the Ccnd2 gene. BCR-mediated activation triggers switching between binding of RUNX1 and its paralog RUNX3 and between SRCAP and the switch/SNF remodeling complex member BRG1. Binding of BRG1 is increased at the Ccnd2 and Rbpj promoters in the Runx1 knockout cells after BCR stimulation. We also find that RUNX1 exerts positive or negative effects on a number of genes that affect the activation response of mouse resting B cells. These include Cd22 and Bank1, which act as negative regulators of the BCR, and the IFN receptor subunit gene Ifnar1 The hyperresponsiveness of the Runx1 knockout B cells to BCR stimulation and its role in regulating genes that are associated with immune regulation suggest that RUNX1 could be involved in regulating B cell tolerance
Addressing Inequity to Achieve the Maternal and Child Health Millennium Development Goals: Looking Beyond Averages.
Inequity in access to and use of child and maternal health interventions is impeding progress towards the maternal and child health Millennium Development Goals. This study explores the potential health gains and equity impact if a set of priority interventions for mothers and under fives were scaled up to reach national universal coverage targets for MDGs in Tanzania. We used the Lives Saved Tool (LiST) to estimate potential reductions in maternal and child mortality and the number of lives saved across wealth quintiles and between rural and urban settings. High impact maternal and child health interventions were modelled for a five-year scale up, by linking intervention coverage, effectiveness and cause of mortality using data from Tanzania. Concentration curves were drawn and the concentration index estimated to measure the equity impact of the scale up. In the poorest population quintiles in Tanzania, the lives of more than twice as many mothers and under-fives were likely to be saved, compared to the richest quintile. Scaling up coverage to equal levels across quintiles would reduce inequality in maternal and child mortality from a pro rich concentration index of -0.11 (maternal) and -0.12 (children) to a more equitable concentration index of -0,03 and -0.03 respectively. In rural areas, there would likely be an eight times greater reduction in maternal deaths than in urban areas and a five times greater reduction in child deaths than in urban areas. Scaling up priority maternal and child health interventions to equal levels would potentially save far more lives in the poorest populations, and would accelerate equitable progress towards maternal and child health MDGs
Founder effect in the Horn of Africa for an insulin receptor mutation that may impair receptor recycling.
AIMS/HYPOTHESIS: Genetic insulin receptoropathies are a rare cause of severe insulin resistance. We identified the Ile119Met missense mutation in the insulin receptor INSR gene, previously reported in a Yemeni kindred, in four unrelated patients with Somali ancestry. We aimed to investigate a possible genetic founder effect, and to study the mechanism of loss of function of the mutant receptor. METHODS: Biochemical profiling and DNA haplotype analysis of affected patients were performed. Insulin receptor expression in lymphoblastoid cells from a homozygous p.Ile119Met INSR patient, and in cells heterologously expressing the mutant receptor, was examined. Insulin binding, insulin-stimulated receptor autophosphorylation, and cooperativity and pH dependency of insulin dissociation were also assessed. RESULTS: All patients had biochemical profiles pathognomonic of insulin receptoropathy, while haplotype analysis revealed the putative shared region around the INSR mutant to be no larger than 28 kb. An increased insulin proreceptor to β subunit ratio was seen in patient-derived cells. Steady state insulin binding and insulin-stimulated autophosphorylation of the mutant receptor was normal; however it exhibited decreased insulin dissociation rates with preserved cooperativity, a difference accentuated at low pH. CONCLUSIONS/INTERPRETATION: The p.Ile119Met INSR appears to have arisen around the Horn of Africa, and should be sought first in severely insulin resistant patients with ancestry from this region. Despite collectively compelling genetic, clinical and biochemical evidence for its pathogenicity, loss of function in conventional in vitro assays is subtle, suggesting mildly impaired receptor recycling only
Brain immune cells undergo cGAS-STING-dependent apoptosis during herpes simplex virus type 1 infection
Protection of the brain from viral infections involves the type I interferon (IFN-I) system, defects in which renders humans susceptible to herpes simplex encephalitis (HSE). However, excessive cerebral IFN-I levels leads to pathologies, suggesting the need for tight regulation of responses. Based on data from mouse models, human HSE cases, and primary cell culture systems, we here show that microglia and other immune cells undergo apoptosis in the HSV-1-infected brain through a mechanism dependent on the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) pathway, but independent of IFN-I. HSV-1 infection of microglia induced cGAS-dependent apoptosis at high viral doses, while lower viral doses led to IFN-I responses. Importantly, inhibition of caspase activity prevented microglial cell death and augmented IFN-I responses. Accordingly, HSV-1-infected organotypic brain slices, or mice treated with caspase inhibitor, exhibited lower viral load and improved outcome of infection. Collectively, we identify an activation-induced apoptosis program in brain immune cells which down-modulates local immune responses
High resolution 3D imaging of living cells with sub-optical wavelength phonons
Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Super-resolution techniques are typically based on the nonlinear and stochastic response of fluorescent labels which can be toxic and interfere with cell function. In this paper we present, for the first time, imaging of live cells using sub-optical wavelength phonons. The axial imaging resolution of our system is determined by the acoustic wavelength (λa = λprobe/2n) and not on the NA of the optics allowing sub-optical wavelength acoustic sectioning of samples using the time of flight. The transverse resolution is currently limited to the optical spot size. The contrast mechanism is significantly determined by the mechanical properties of the cells and requires no additional contrast agent, stain or label to image the cell structure. The ability to breach the optical diffraction limit to image living cells acoustically promises to bring a new suite of imaging technologies to bear in answering exigent questions in cell biology and biomedicine
Trypanosoma vivax Infections: Pushing Ahead with Mouse Models for the Study of Nagana. II. Immunobiological Dysfunctions
Trypanosoma vivax is the main species involved in trypanosomosis, but very little is known about the immunobiology of the infective process caused by this parasite. Recently we undertook to further characterize the main parasitological, haematological and pathological characteristics of mouse models of T. vivax infection and noted severe anemia and thrombocytopenia coincident with rising parasitemia. To gain more insight into the organism's immunobiology, we studied lymphocyte populations in central (bone marrow) and peripherical (spleen and blood) tissues following mouse infection with T. vivax and showed that the immune system apparatus is affected both quantitatively and qualitatively. More precisely, after an initial increase that primarily involves CD4+ T cells and macrophages, the number of splenic B cells decreases in a step-wise manner. Our results show that while infection triggers the activation and proliferation of Hematopoietic Stem Cells, Granulocyte-Monocyte, Common Myeloid and Megacaryocyte Erythrocyte progenitors decrease in number in the course of the infection. An in-depth analysis of B-cell progenitors also indicated that maturation of pro-B into pre-B precursors seems to be compromised. This interferes with the mature B cell dynamics and renewal in the periphery. Altogether, our results show that T. vivax induces profound immunological alterations in myeloid and lymphoid progenitors which may prevent adequate control of T. vivax trypanosomosis
PCR-DGGE assessment of the bacterial diversity of breast milk in women with lactational infectious mastitis
<p>Abstract</p> <p>Background</p> <p>Infectious mastitis is a common condition during lactation and in fact, represents one of the main causes leading to a precocious weaning. The number of studies dealing with lactational mastitis is low and, up to now, the etiological diagnosis is frequently made on the basis of unspecific clinical signs. The aim of this study was to investigate the microbial diversity of breast milk in 20 women with lactational mastitis employing culture-dependent and culture-independent (PCR-DGGE) approaches.</p> <p>Methods</p> <p>Breast milk samples were cultured in different media to investigate the presence of bacteria and/or yeasts, and a total of 149 representative isolates were identified to the species level by 16S rRNA gene PCR sequencing. The microorganisms recovered were compared with those found by PCR-DGGE analysis. To identify the DGGE profiles two reference markers of different microbial species were constructed. Sequence analysis of unknown bands was also performed.</p> <p>Results</p> <p>Staphylococci were the dominant bacterial group and <it>Staphylococcus epidermidis </it>was the dominant species. In a lower number of samples, other bacteria (mainly streptococci and a few gram-negative species) were also identified. Globally, PCR-DGGE results showed a good correlation with those obtained by culture-based methods. However, although DNA bands corresponding to different lactic acid bacteria were detected, such bacteria could not be isolated from the milk samples.</p> <p>Conclusion</p> <p>Staphylococci seem to be the main etiological agents of human lactational mastitis. The combined use of culture and molecular techniques allowed a better characterization of the bacterial diversity in milk from women suffering from infectious mastitis. Our results suggest that this condition could be the result of a disbiotic process where some of the bacterial species usually present in human milk outgrow (staphylococci) while others disappear (lactobacilli or lactococci).</p
Whistle communication in mammal-eating killer whales (Orcinus orca): further evidence for acoustic divergence between ecotypes
Public signaling plays an important role in territorial and sexual displays in animals; however, in certain situations, it is advantageous to keep signaling private to prevent eavesdropping by unintended receivers. In the northeastern Pacific, two populations of killer whales (Orcinus orca), fish-eating “resident” killer whales and mammal-eating “transient” killer whales, share the same habitat. Previous studies have shown that residents use whistles as private signals during close-range communication, where they probably serve to coordinate behavioral interactions. Here, we investigated the whistling behavior of mammal-eating killer whales, and, based on divergent social structures and social behaviors between residents and transients, we predicted to find differences in both whistle usage and whistle parameters. Our results show that, like resident killer whales, transients produce both variable and stereotyped whistles. However, clear differences in whistle parameters between ecotypes show that the whistle repertoire of mammal-eating killer whales is clearly distinct from and less complex than that of fish-eating killer whales. Furthermore, mammal-eating killer whales only produce whistles during “milling after kill” and “surface-active” behaviors, but are almost completely silent during all other activities. Nonetheless, whistles of transient killer whales may still serve a role similar to that of resident killer whales. Mammal-eating killer whales seem to be under strong selection to keep their communication private from potential prey (whose hearing ranges overlap with that of killer whales), and they appear to accomplish this mainly by restricting vocal activity rather than by changes in whistle parameters
- …