1,022 research outputs found

    Addressing Inequity to Achieve the Maternal and Child Health Millennium Development Goals: Looking Beyond Averages.

    Get PDF
    Inequity in access to and use of child and maternal health interventions is impeding progress towards the maternal and child health Millennium Development Goals. This study explores the potential health gains and equity impact if a set of priority interventions for mothers and under fives were scaled up to reach national universal coverage targets for MDGs in Tanzania. We used the Lives Saved Tool (LiST) to estimate potential reductions in maternal and child mortality and the number of lives saved across wealth quintiles and between rural and urban settings. High impact maternal and child health interventions were modelled for a five-year scale up, by linking intervention coverage, effectiveness and cause of mortality using data from Tanzania. Concentration curves were drawn and the concentration index estimated to measure the equity impact of the scale up. In the poorest population quintiles in Tanzania, the lives of more than twice as many mothers and under-fives were likely to be saved, compared to the richest quintile. Scaling up coverage to equal levels across quintiles would reduce inequality in maternal and child mortality from a pro rich concentration index of -0.11 (maternal) and -0.12 (children) to a more equitable concentration index of -0,03 and -0.03 respectively. In rural areas, there would likely be an eight times greater reduction in maternal deaths than in urban areas and a five times greater reduction in child deaths than in urban areas. Scaling up priority maternal and child health interventions to equal levels would potentially save far more lives in the poorest populations, and would accelerate equitable progress towards maternal and child health MDGs

    Founder effect in the Horn of Africa for an insulin receptor mutation that may impair receptor recycling.

    Get PDF
    AIMS/HYPOTHESIS: Genetic insulin receptoropathies are a rare cause of severe insulin resistance. We identified the Ile119Met missense mutation in the insulin receptor INSR gene, previously reported in a Yemeni kindred, in four unrelated patients with Somali ancestry. We aimed to investigate a possible genetic founder effect, and to study the mechanism of loss of function of the mutant receptor. METHODS: Biochemical profiling and DNA haplotype analysis of affected patients were performed. Insulin receptor expression in lymphoblastoid cells from a homozygous p.Ile119Met INSR patient, and in cells heterologously expressing the mutant receptor, was examined. Insulin binding, insulin-stimulated receptor autophosphorylation, and cooperativity and pH dependency of insulin dissociation were also assessed. RESULTS: All patients had biochemical profiles pathognomonic of insulin receptoropathy, while haplotype analysis revealed the putative shared region around the INSR mutant to be no larger than 28 kb. An increased insulin proreceptor to β subunit ratio was seen in patient-derived cells. Steady state insulin binding and insulin-stimulated autophosphorylation of the mutant receptor was normal; however it exhibited decreased insulin dissociation rates with preserved cooperativity, a difference accentuated at low pH. CONCLUSIONS/INTERPRETATION: The p.Ile119Met INSR appears to have arisen around the Horn of Africa, and should be sought first in severely insulin resistant patients with ancestry from this region. Despite collectively compelling genetic, clinical and biochemical evidence for its pathogenicity, loss of function in conventional in vitro assays is subtle, suggesting mildly impaired receptor recycling only

    Brain immune cells undergo cGAS-STING-dependent apoptosis during herpes simplex virus type 1 infection

    Get PDF
    Protection of the brain from viral infections involves the type I interferon (IFN-I) system, defects in which renders humans susceptible to herpes simplex encephalitis (HSE). However, excessive cerebral IFN-I levels leads to pathologies, suggesting the need for tight regulation of responses. Based on data from mouse models, human HSE cases, and primary cell culture systems, we here show that microglia and other immune cells undergo apoptosis in the HSV-1-infected brain through a mechanism dependent on the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) pathway, but independent of IFN-I. HSV-1 infection of microglia induced cGAS-dependent apoptosis at high viral doses, while lower viral doses led to IFN-I responses. Importantly, inhibition of caspase activity prevented microglial cell death and augmented IFN-I responses. Accordingly, HSV-1-infected organotypic brain slices, or mice treated with caspase inhibitor, exhibited lower viral load and improved outcome of infection. Collectively, we identify an activation-induced apoptosis program in brain immune cells which down-modulates local immune responses

    High resolution 3D imaging of living cells with sub-optical wavelength phonons

    Get PDF
    Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Super-resolution techniques are typically based on the nonlinear and stochastic response of fluorescent labels which can be toxic and interfere with cell function. In this paper we present, for the first time, imaging of live cells using sub-optical wavelength phonons. The axial imaging resolution of our system is determined by the acoustic wavelength (λa = λprobe/2n) and not on the NA of the optics allowing sub-optical wavelength acoustic sectioning of samples using the time of flight. The transverse resolution is currently limited to the optical spot size. The contrast mechanism is significantly determined by the mechanical properties of the cells and requires no additional contrast agent, stain or label to image the cell structure. The ability to breach the optical diffraction limit to image living cells acoustically promises to bring a new suite of imaging technologies to bear in answering exigent questions in cell biology and biomedicine

    Food Supply and Seawater pCO2 Impact Calcification and Internal Shell Dissolution in the Blue Mussel Mytilus edulis

    Get PDF
    Progressive ocean acidification due to anthropogenic CO2 emissions will alter marine ecosytem processes. Calcifying organisms might be particularly vulnerable to these alterations in the speciation of the marine carbonate system. While previous research efforts have mainly focused on external dissolution of shells in seawater under saturated with respect to calcium carbonate, the internal shell interface might be more vulnerable to acidification. In the case of the blue mussel Mytilus edulis, high body fluid pCO2 causes low pH and low carbonate concentrations in the extrapallial fluid, which is in direct contact with the inner shell surface. In order to test whether elevated seawater pCO2 impacts calcification and inner shell surface integrity we exposed Baltic M. edulis to four different seawater pCO2 (39, 142, 240, 405 Pa) and two food algae (310–350 cells mL−1 vs. 1600–2000 cells mL−1) concentrations for a period of seven weeks during winter (5°C). We found that low food algae concentrations and high pCO2 values each significantly decreased shell length growth. Internal shell surface corrosion of nacreous ( = aragonite) layers was documented via stereomicroscopy and SEM at the two highest pCO2 treatments in the high food group, while it was found in all treatments in the low food group. Both factors, food and pCO2, significantly influenced the magnitude of inner shell surface dissolution. Our findings illustrate for the first time that integrity of inner shell surfaces is tightly coupled to the animals' energy budget under conditions of CO2 stress. It is likely that under food limited conditions, energy is allocated to more vital processes (e.g. somatic mass maintenance) instead of shell conservation. It is evident from our results that mussels exert significant biological control over the structural integrity of their inner shell surfaces

    Patient Discomfort Associated with the Use of Intra-arterial Iodinated Contrast Media: A Meta-Analysis of Comparative Randomized Controlled Trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Discomfort characterized by pain and warmth are common adverse effects associated with the use of intra-arterial iodinated contrast media (CM). The objective of this review was to pool patient-reported outcomes available from head-to-head randomized controlled trials (RCTs) and to compare the discomfort rates associated with iso-osmolar contrast media (IOCM; i.e., iodixanol) to those reported with various low-osmolar contrast media (LOCM).</p> <p>Methods</p> <p>A review of the literature published between 1990 and 2009 available through Medline, Medline Preprints, Embase, Biological Abstracts, BioBase, Cab Abstracts, International Pharmaceutical Abstracts, Life Sciences Collection, Inside Conferences, Energy Database, Engineering Index and Technology Collection was performed to compare rates of discomfort associated with the use of the IOCM (iodixanol) vs. various LOCM agents in head-to-head RCTs. All trials with a Jadad score ≥2 that reported patient discomfort data following intra-arterial administration of CM were reviewed, coded, and extracted.</p> <p>Results</p> <p>A total of 22 RCTs (n = 8087) were included. Overall discomfort (regardless of severity) was significantly different between patients receiving IOCM and various LOCMs (risk difference [RD] -0.049; 95% confidence interval [CI]: -0.076, -0.021; p = 0.001). IOCM was favored over all LOCMs combined with a summary RD value of -0.188 (95% CI: -0.265, -0.112; p < 0.001) for incidence of pain, regardless of severity. A greater reduction in the magnitude of pain was observed with IOCM (iodixanol), particularly with selective limb and carotid/intracerebral procedures. Similarly, the meta-analysis of warmth sensation, regardless of severity, favored IOCM over LOCMs with an RD of -0.043 (95% CI: -0.074, -0.011; p = 0.008). A positive linear relationship was observed between the discomfort effect size and age and a negative relationship with increasing proportion of women. The opposite trends were observed with warmth sensation.</p> <p>Conclusions</p> <p>IOCM was associated with less frequent and severe patient discomfort during intra-arterial administration. These data support differences in osmolality as a possible determinant of CM discomfort.</p

    4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The crude extract of the fruit bearing plant, <it>Physalis peruviana </it>(golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown.</p> <p>Methods</p> <p>Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug.</p> <p>Results</p> <p>It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (<it>p </it>< 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (<it>p </it>< 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC<sub>50</sub>) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G<sub>1 </sub>accumulation and slight arrest at the G<sub>2</sub>/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G<sub>2</sub>/M arrest for H1299 cells treated with 5 μg/mL for 24 h.</p> <p>Conclusions</p> <p>In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.</p
    corecore