64,776 research outputs found

    Beta decay of rb86

    Get PDF
    Measuring of rubidium 86 beta decay using lithium drifted surface barrier silicon detector

    Flow of evaporating, gravity-driven thin liquid films over topography

    Get PDF
    The effect of topography on the free surface and solvent concentration profiles of an evaporating thin film of liquid flowing down an inclined plane is considered. The liquid is assumed to be composed of a resin dissolved in a volatile solvent with the associated solvent concentration equation derived on the basis of the well-mixed approximation. The dynamics of the film is formulated as a lubrication approximation and the effect of a composition-dependent viscosity is included in the model. The resulting time-dependent, nonlinear, coupled set of governing equations is solved using a full approximation storage multigrid method. The approach is first validated against a closed-form analytical solution for the case of a gravity-driven, evaporating thin film flowing down a flat substrate. Analysis of the results for a range of topography shapes reveal that although a full-width, spanwise topography such as a step-up or a step-down does not affect the composition of the film, the same is no longer true for the case of localized topography, such as a peak or a trough, for which clear nonuniformities of the solvent concentration profile can be observed in the wake of the topography

    Self-gravitating astrophysical mass with singular central density vibrating in fundamental mode

    Full text link
    The fluid-dynamical model of a self-gravitating mass of viscous liquid with singular density at the center vibrating in fundamental mode is considered in juxtaposition with that for Kelvin fundamental mode in a homogeneous heavy mass of incompressible inviscid liquid. Particular attention is given to the difference between spectral formulae for the frequency and lifetime of ff-mode in the singular and homogeneous models. The newly obtained results are discussed in the context of theoretical asteroseismology of pre-white dwarf stage of red giants and stellar cocoons -- spherical gas-dust clouds with dense star-forming core at the center.Comment: Mod. Phys. Lett. A, Vol. 24, No. 40 (2009) pp. 3257-327

    Study of the concept of inertially aided barometric altimetry system for supersonic aircraft

    Get PDF
    Study of concept of inertially aided barometric altimetry system to meet vertical separation requirements of 1000 and 2000 feet for Mach 3.5 aircraft in altitude hold at 80,000 fee

    A combined experimental and computational fluid dynamics analysis of the dynamics of drop formation

    Get PDF
    This article presents a complementary experimental and computational investigation of the effect of viscosity and flowrate on the dynamics of drop formation in the dripping mode. In contrast to previous studies, numerical simulations are performed with two popular commercial computational fluid dynamics (CFD) packages, CFX and FLOW-3D, both of which employ the volume of fluid (VOF) method. Comparison with previously published experimental and computational data and new experimental results reported here highlight the capabilities and limitations of the aforementioned packages

    Development and testing of porous ionizer materials, part I Summary report, Feb. 1965 - May 1966

    Get PDF
    Development and testing of porous tungsten ionizer materials for cesium contact engine

    Laser cooling in the Penning trap: an analytical model for cooling rates in the presence of an axializing field

    Full text link
    Ions stored in Penning traps may have useful applications in the field of quantum information processing. There are, however, difficulties associated with the laser cooling of one of the radial motions of ions in these traps, namely the magnetron motion. The application of a small radio-frequency quadrupolar electric potential resonant with the sum of the two radial motional frequencies has been shown to couple these motions and to lead to more efficient laser cooling. We present an analytical model that enables us to determine laser cooling rates in the presence of such an 'axializing' field. It is found that this field leads to an averaging of the laser cooling rates for the two motions and hence improves the overall laser cooling efficiency. The model also predicts shifts in the motional frequencies due to the axializing field that are in qualitative agreement with those measured in recent experiments. It is possible to determine laser cooling rates experimentally by studying the phase response of the cooled ions to a near resonant excitation field. Using the model developed in this paper, we study the expected phase response when an axializing field is present.Comment: 22 pages, 7 figure
    corecore